A DECOMPOSITION APPROACH FOR THE
MULTI-MODAL, RESOURCE-CONSTRAINED,
MULTI-PROJECT SCHEDULING PROBLEM
WITH GENERALIZED PRECEDENCE AND
EXPEDITING RESOURCES

DISSERTATION

Michadl L. Fredley, Mgor, USAF
AFIT/DS/ENS/01-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Report Documentation Page

Report Date Report Type
13 Dec 2001 Final

Dates Covered (from... to)
June 1997 - Sept 2001

Title and Subtitle

A Decomposition Approach for the Multi-Modal,
Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting
Resources

Contract Number

Grant Number

Program Element Number

Author (s)
Major Michael L. Fredley, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Air Force Institute of Technology Graduate School of
Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 Wright-Patterson AFB, OH
45433-7765

Performing Organization Report Number
AFIT/DS/ENS/01-02

Sponsoring/M onitoring Agency Name(s) and
Address(es)

Air Force Office of Scientific Research ATTN: Magjor
Juan R. Vasguez 801 N. Randolph St., Room 933
Arlington, VA 22203-1977

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

The field of project scheduling has received a great deal of study for many years with a steady evolution
of problem complexity and solution methodologies. As solution methodologies and technologies improve,
increasingly complex, real-world problems are addressed, presenting researchers a continuing challenge to
find ever more effective means for approaching project scheduling. This dissertation introduces a project
scheduling problem which is applicable across a broad spectrum of real-world situations. The problem is
based on the well-known Resource-Constrained Project Scheduling Problem, extended to include multiple
modes, generalized precedence, and expediting resources. The problem is further extended to include
multiple projects which have generalized precedence, renewable and nonrenewabl e resources, and
expediting resources at the program level. The problem presented is one not previously addressed in the
literature nor isit one to which the existing specialized project scheduling methodologies can be directly
applied. This dissertation presents a decomposition approach for solving the problem, including
algorithms for solving the decomposed subproblems and the master problem. This dissertation also
describes a methodology for generating instances of the new problem, extending the way existing problem
generators describe and construct network structures and this class of problem. The methodologies
presented are demonstrated through extensive empirical testing.

Subject Terms

CPM, Critical Path Method, Decomposition, Network, Network Generator, Program, Program
Management, Project, Project Generator, Project Management, Project Scheduling, Scheduling,
Sweeney-Murphy Decomposition

Report Classification Classification of thispage
unclassified unclassified

Classification of Abstract Limitation of Abstract
unclassified uu

Number of Pages
270

The views expressed in this dissertation are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U. S. Government.

AFIT/DS/ENS/01-02

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL,
RESOURCE-CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM
WITH GENERALIZED PRECEDENCE AND EXPEDITING RESOURCES

DISSERTATION

Presented to the Faculty
Graduate School of Engineering and Management
Air Force Ingtitute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Michael L. Fredley, B.S., M.S.

Major, USAF

September 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/DS/ENS/01-02

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL,
RESOURCE-CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM
WITH GENERALIZED PRECEDENCE AND EXPEDITING RESOURCES

Michael L. Fredley, B.S., M.S.
Major, USAF

Approved:

Date

Richard F. Deckro (Chairman)

Aihua W. Wood (Dean’ s Representative)

James W. Chrissis (Member)

James T. Moore (Member)

E. Price Smith (Member)

Accepted:

Robert A. Cdlico, Jr. Date
Dean, Graduate School of Engineering and Management

Acknowledgments

I would like to express my sincere appreciation to my advisor, Dr. Richard F. Deckro, for his
guidance and support throughout the course of this dissertation effort. | am also grateful to those
who have served on my committee, Dr. James W. Chrissis, Dr. James T. Moore, Lt Col E. Price
Smith, Col Jack A. Jackson, and Mg Edward A. Pohl, for the expertise they have shared and for
their patience through this long process. | express my gratitude to my Dean’ s representative, Dr.
Aihua W. Wood, for her assistance in finalizing this dissertation and for her contributions during
my defense. Without the mentoring of these outstanding individuals, this dissertation would not
have been possible.

Special thanks to my leadership at the Air Force Studies and Analyses Agency, Col Donald P.
Higgins, Jr., Col Rowayne A. Schatz, and Mgj Jeffrey Marcotte, for providing me the resources |
needed to complete this research. Thanks are due, also, to Mr. Steven Sovine who taught me so
much about processes and how to handle large amounts of data, without which my analysis would
have been extremely painful. Finaly, | am indebted to my family which has stood by me through

this effort, and every other endeavor |’ ve undertaken, and given me the encouragement | needed.

Michael L. Fredley

Table of Contents

Page

ACKNOWIBAGIMIENES. ...ttt ettt ettt e et e e st e e e ae e e s bt e e sateeesnteesnneeesnseeeanseesnneens iv

1S o T 1 =TS iX

LISt Of TADIES ...t Xi

Y 0 o SO O PP PPRRPRP Xil

I INEFOTUCTION. ...ttt e ineen e e nneesnneen 1-1

OVEIVIBIW. ...ttt ettt b e e h e e e e st e e h et e s e e st e s he e emn e e n e e nneennneene s 1-1

BACKGIOUNG. ...ttt nne e e 1-1

RESEAICN ISSUES.......ceeiee e e 1-6

RESEAICH OJECHIVES ...ttt et e et e e smte e e sneeeeneeas 1-6

N o o ST 1-8

SUMIMBIY ...eeeeeeee ettt e e sss e st e s e e ame e e s ne e e smr e e e ame e e sane e e emne e sneeesane e e nmneesnneennnes 1-9

I LItEratUrE REVIEW ...t 2-1

INEFOTUCTION. ... b et e n e s e e eneenneesnneen 2-1

Problem HIEIarChYooe ettt as 2-1

Single-Project SChEOUINGc.viieee e s 2-3

The Project-Scheduling Problem............oooo e 2-3

RESOUICE CONSLIAINES.......ceeuveeiee ettt 2-4

Mathematical Programmingcooeereeeiienienieeieesee e 2-7

Graph-Based APPrOaChes........oceee et 2-8

IMPlICIE ENUMEIELION.........oiiiiiiiieieeee e 29

Other APPrOACNES......coo et e e e enes 2-10

ACHVILY Crashingoo o s e 2-12

Minimal Cost Project Network Problem ..o 2-12

Project Time/Cost Tradeoff Problem ... 2-12

Activity Duration Crashing Problem............c.ccoieiiiiiieeeeeese e 2-12

Multi-Modal, Resource-Constrained Project Scheduling Problem....................... 2-13
Resource-Constrained Project Scheduling

Problem with Multiple Crashable MOdES............coviiiiiiieee e 2-17

Mode-Identity, Resource-Constrained Project Scheduling Problem..................... 2-17

EXPEAItiNg RESOUICES.......coviiieiiiieiee sttt 2-17

Generalized PreCROBNCE..........oiiiiiieciee st 2-19

MUIti-Project SCNEAUIINGeeiieeiieiee et 2-20

Multi-Project Scheduling Problem ..o 2-20

Resource-Constrained, Multi-Project Scheduling Problem............cccocoiiiiiiiiiies 2-22

Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem.................. 2-23

Generalized, Multi-Modal, Resource-Constrained

Multi-Project Scheduling Problem...........ocvoiiiiiieeeee e 2-24
SUMIMIBIY ...t et ee et e s e ss e s se e e sare e e smr e e s me e e sane e e snre e e anseesaneeesnreeennneesnneenns 2-24
/= g oo Y2 31
INIEFOTUCTION. ...ttt e e ne e saeesn e e nneesnneen 31
Mathematical FOrMUIBLION.ooiiiiiiieee e 3-1

ASSUMPLIONS ...ttt e b e st e n e e s neeenn e e neenaes 35

N[0} = 1] o TSP T RO PRPOPP 3-5

NUumbering of ACEIVILY MOUESc.eoiiiiiiiieee e 3-8

Activity Start TiIMe WINAOWScoouieiiiiieeiesee e 3-8

CONSITAINES. ...ttt b e s e n e ne e e e e e n e e nnnennneene s 3-12

L@ o] o LAY T g) o S 3-18

COMPIELE MOTEL ...t nn e ne s 3-19
Problem Size and COMPIEXITYccoueiiiie et 321
Decomposition of the MRCMPSP-GPR/EXPccciiiiiiieiieieseeseesee e 3-24
SOIUtION MEENOAOIOTIES ...t 3-28

Problem GENEIGLION..........ooiiiiieie e 3-28

Single Project/Subproblem SOIULION............c.oooieiiieee e 3-29

Decomposition/Master Problem SolUtionoocveiiiiieiicieeeecee e 3-30
SUMIMBIY ...t et e st e st e s e e ss e e s s e e sane e e smr e e s me e e sane e e smre e e anseesaneeesnreesanneesnneenas 3-30
Problem GENEILION.ooeieiieee et 4-1
OVEIVIBIW. ...ttt h e e h e e bt e e he e e et e st e s b e e nmn e e ne e nnnenaneene s 4-1
PAGER: Problem GENEIGLOTcocuiiiiiiieeieeiee et 4-4

Step 1 — Specification File INPUL..........oooeiiiieeee e 4-4

Step 2 — BasiC Data GENEIAIONc.ueeieeiieeeieeieesie e 4-6

StEP 3 — NEWOIK GENEIBEION.ccveeeiieeieesiee ettt 4-8

Step 4 — Resource Data GENEIationc.cuveieeieeiiiesiesee e 4-40

SteP 5 — Cost Data GENENaLIONoooueeieeiieeiee et 4-42

StEP 6 — Problem OULPULoceiieieiesee e 4-44
PAGER IMplementationoeee it e e e e smee e e s 4-44
SUMMArY aNd CONCIUSIONS..........oeiiiiiieiiesiee ettt 4-47
Single Project SChedUIINGcooioiiiie s 51
OVEIVIBIW. ...ttt et h e e he e e e st e e h et e e e e b e e s beenan e e neenneenaneene s 5-1
APProaChes from the LItEraturec.ooiiiiiiiieee e 5-2

Implicit Enumeration by Branch-and-Boundc.ccooviiieiienicnicsecceeeee 5-2

ZEr0-ONE ProgramiMiNg...........eeoeeereesseeseesseesseeseesseesseesseesnessseesseesneesseessessneesseas 5-6

Implicit Enumeration by ACLiVity SEQUENCE..........cocviriieiieiieeeesee e 5-7
[Tl AN o o] 11 o o S 5-7

ASSUMPLIONS ...ttt ne e et e n e nneennn e e neennes 59

INILTAlIZBLION PNBSE.......coiiiiieeee et 5-10

Vi

VI.

S Lo AT 0= = < TR 5-10

Page

BOUNAING RUIES........eei ettt et e e e et e e emne e e snteeenneens 5-19
Bounding Rule ZDS (Zero-Duration ACtiVity Start)cccceeeerieeieenienieeneeseens 5-20
Feasibility Rule NRF (Nonrenewable Resource Feasibility)occccovioiiiiiiiennie 5-20
Bounding Rule NEC (Nonrenewable Expediting Resource Cost)ccceeveeeeneeennee 5-21
Feasibility Rule EST (Early Start TImMe)ccoooviiieeriiieeieeeeeeeesee e 5-21
Feasibility Rule MD (Mode DUration)coooeeeeoeeeiiee e see e 5-22
Bounding RUIE MC (MOOE COS) -.cuvveeeneireiiee ettt 5-23
Bounding Rule REC (Renewable Expediting Resource COost)cccceeeeeicerenieennne 5-24
Feasibility Rule MOD (Infeasible MOdES)............oooeeiiiiiieiicceeeeeeeeee e 5-25
1= 1] 0 TSRS 5-25
Test Problem Parameters Held Constantocveiveeieeiienieeeesec e 5-26
Test Problem Parameters Which Are Varied...........ocveiiiieiieiec e 5-27
Computational Contribution of Bounding RUIES.............cccoeiiiiiieniineeeeeeeee 5-28
Comparison to Integer Programimingc.eeeoeereereeeneeseeseeesree e ssee e s 5-32
Solution ResUltS VS, K&y Parameters...........ccoviieiieiiieiee e 5-34
SOIULTION THMIE ...t n e nneene s 5-45
Time to Optimal SOIULIONcciiiiiieiec e 5-48
ComMPIEtiON TIME VS, Ke..eeiiiieeeiee ettt e snee e eneees 5-52
SUMMArY aNd CONCIUSIONS..........ooiuiiiiieiiesire ettt 5-55
Program Decomposition AIGOITRM............ooiiiiie e 6-1
OVEIVIBIW. ...ttt et h e e h et e et e b e e he e e s e e st e s b e e nan e e neennnennneene s 6-1
Decomposition Approaches in the LItErature...........oooveiieiieieeseeeeeeesee e 6-2
Sweeney-Murphy DECOMPOSITION.civieiiieireeieeiee e 6-4
Problem DECOMPOSILION.........cciiiiiiiieii et 6-4
Solving the SUDProbIEMS. ..o 6-10
S0Iving the Master ProblEM.............ooieiee s 6-11
ASSUMPLIONS ...ttt n et e b e e ne e snn e sn e e nneennes 6-13
N[0} = 1] o U PP OURP PSPPI 6-13
Decomposition AlGOFTML..........c.ii e 6-15
Correction to Sweeney-Murphy APProachcoeeeeeeieeneeieeeesee e 6-22
CROICE OF K.t s 6-26
ChoiCe Of MUITPHENS......eieeee e e 6-29
ACCEIEIaLioN SCNEIMES.......c.eeiiiiiiie et n e nnee e 6-35
Subproblem Solution BOUNDINGc.eeieiiiieieee e 6-36
SENES APPIOBCN. ...ttt 6-36
INCremental ENUIMEIELION.oiiiiiie et 6-38
TSt ProblEM DESIGNooiieiieeiee ettt n e 6-38
Program DESIGNS.ccuviiiieiieiee ettt 6-38
Project Level DIffICUIYcooveiiiiieeeeeese e 6-40
Program Level DIffiCUILYoooioiiiie e 6-41
Problem GENEIGLION.ooiiiie e 6-43
TESHING RESUILS. ...ttt n e sneennne e 6-43
Methods of Determining MUILIPIErSooveiiiiieeeee e 6-43
ACCEIEratioN SCNEIMES.......ccueiiiieieeree e 6-45

Vil

(@ g0 Lo SN0 TR 6-47

Comparison to Single-Project SChedUler ..o 6-49

Page

NONFCONVEIGEINCE.eee e et sree et r e s s e sne e s e s snn e e sne e e snr e e e enreenanes 6-50

SUMMErY aNd CONCIUSIONS..........ooiiiiiiieiieiie ettt 6-51

VIl. Contributions and RECOMMENELIONSccuvirrieiiieiii e 7-1
CONEIIBULIONS ...t n e ne s 7-1
RECOMMENUBLIONS. ... 7-5
SUMIMIBIY ...eeeeeeee et et ee et ss e e s e e s e e ame e e s ne e e sm s e s ame e e sane e e smne e eneeesane e e nnneesnnneennnes 7-6

PN o] 07 010 (b a2 N Lo o o S A-1
OVEIVIBIW. ...ttt h ettt h e e h e e e bt e e h e e e st e bt e s he e enn e e neenneennneene s A-1
PrODIEM TYPES ...ttt ettt eneeas A-1
ADbbreviations aNd ACIONYIMS........cociie e eree e et e e e e seee e eeeseeeesaeeesseeesnreeesneeeeneens A-1
MathematiCal NOBLIONcc.eiiiiiiieie it A-2
N[0} = 1] o PP URP PP OPP A-3

Appendix B. Sample PAGER INPUL.......c..coiiiiiiiiieee e B-1
Problem Generator INPULcovoiiieieieee e B-1
Appendix C. Sample PAGER OULPUL..........cuoiiiiiieiieiee et C-1
ProBIEM FlE......coeeeeee e e C-1
Appendix D. Sample Scheduler OQUEPULooveiiieiieieceeeeeree e D-1
Appendix E. Sample Decomposition Algorithm OUEPUL.............coceeriieiiiiieniiesec e E-1
Appendix F. Best Solutionsto (MP) VEISUS (P)......ccoviiiiiiieieiieeeesee e F-1
OVEIVIBIW. ...ttt et h e e bt e e e bt e e he e e et e st e s he e nnn e e ne e nneenaneene s F-1
Problem Generation INPUL............cooiiiieieee e F-1
ProBIEM FlE......coeeee e F-3

Key Solutions (1, 2, 99, 100, 1000)ccuerreerreerrerreesiee e sreessee e ssse e seesneesneesneens F-5
BIDIIOGraPNY ... e BIB-1
LY 4= TP PR PR VITA-1

viii

Ligt of Figures

Figure Page
2-1. Problem HIEIarChy ...t 2-2
3-1. Activity-on-Node Representation of Example Problem 1 ..o, 3-2
3-2. EXample ProblemM 2o e 33
3-3. Example Activity Start TimMeoo e 39
3-4. BIlOCK-ANGUIBE SEFUCTUIE........eiieiee ettt et e e e e eneeeeneeas 3-27
4-1. Overall FIOW Of PAGER.........oooiiiiiee et 4-5
4-2. Standard and Generalized PreCedenCe ArCS........oovvieiriieerierie et 4-9
G R (0] o = L ST 4-13
4-4, CNC VEISUS RT ...ttt ettt b e bt e b et be e e sneeneas 4-18
4-5. Generation Of aProjeCt NEIWOIKcooiiiiiii e 4-26
4-6. Generating aProjeCt NEtWOIKcceoi i e 4-27
4-7. Generating aParallel Project NEtWOIKc.cooiiieiiiie e 4-28
4-8. Example of MUlti-Project Programccooceieiiee e 4-29
4-9. INItIAiZING R WIth ONES.......oovvvvvveeeeeeeeecissssssesseeeeeesssesceeeesss e 4-30
4-10. Initializing R, with Mixed Project NOOESovveerverrieeeiseiessessiesssessessiesseon, 4-30
4-11. Precedence-Feasible Early Start Times of Zero-Duration ACtiVIties...........cccceeceeneerinenns 4-39
4-12. Distribution of Generation Times (5 t0 50 ACHIVItIES)ooviveeiiiieiee e 4-45
4-13. Distribution of Generation TIimes (510 42 ACHVILIES........coovieeiiiie e 4-46
4-14. Distribution of Generation Times by Number of Job ... 4-46
5-1. Rulevs. Average Solution Time (seconds) for 5 ACHVItIES...........ccoereerieenicneeeeeee 5-29
5-2. Rulevs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities.................... 5-30
5-3. Rulevs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying MOGES...........ooiuiiiiie e 5-31
5-4. Rulevs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activitiesand Varying RTceoo it 5-32
5-5. Scheduler vs. OSL Improvement by Restrictiveness for 10 ACtiVIties..........cccocvevcveeneenne. 5-34
5-6. SOlUtION RESUILS @S OCCUITENCESveeiierieieieesiee st et et sne e nnee s 5-36
5-7. Solution ResUItS @S PErCENTAgES.ueeivieriierie et 5-36
5-8. Infeasible Problemsvs. Resource Strength.........coooeeeeie e, 5-37
5-9. Infeasible Problemsvs. RS and MOGE..........ccceeiiiiiiiiiciecceeee e 5-38
5-10. Infeasibilities vs. RS and Percent of Activitieswith GPR............ccccciiiiiieiiciieeeeee 5-39
5-11. Solution Time Exceeding 20 Seconds vs. Restrictiveness (OCCUITenCes)cvveveerveenne. 5-40
5-12. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Percentages)c.ccvveveenveenne. 5-40
5-13. Solution Time Exceeding 20 SECONASVS. RS.........cooviiiiiiiiiiieeeeee e 5-41
5-14. Problems Solved by 2-Level FaCtOrS........oooiiiiiieee e 5-42
5-15. Problems Solved Versus RESIICHVENESS.........c.eiiiiiiiriiesee e 5-43
5-16. Problems Solved Versus Resource Strengthooeeeeeiiiiinieieeeeeeee e 5-44
5-17. Cumulative Problems Solved by Time Binand JOBS...........cccovieieniinieeec 5-46
5-18. Cumulative Problems Solved by Time Binand RTcoocoiiieiiiieeiee e 5-47
5-19. Cumulative Problems Solved by Time Binand RS 5-47
5-20. Average Time to Optimal Versus Completion TIMme Bincccoviviriiii e, 5-49
5-21. Optima Time Bin Versus Completion TiMeBiNcccieiiieiee e 5-49
5-22. Problems Solved Versus Completion TIME BiN..........cccveiveiiiiiieiie e 5-50

5-23. Problems Solved Versus Completion TimeBin by RTccoviiiiiieiiee e, 5-50
Figure Page
5-24. Problems Solved Versus Completion TimeBinby RS..........ccooiiiiiiie 5-51
5-25. Problem Solution Results for k=1, 10, 100, 1000.........cccooeieiiiieieeeeeeeeeeeeeeeeeeeeee, 5-53
5-26. Solution Time Statistics for k=1, 10, 100, 1000cceereereerrreereerre e 5-53
5-27. Average COmMPIEtion TIME VS, K ...ooocuiiiiieeiiee et 5-54
5-28. Average Time Per SOIULION.........coi it 5-55
5-29. Overall Average Solution TIMES VEISUS Kcoveiiiiiiiiie e 5-55
6-1. BIlOCK-ANGUIAI SEFUCTUIE........eii it st eneeas 6-5
6-2. Sweeney-Murphy SUDProbIem............oii 6-6
6-3. Sweeney-Murphy Master ProblEM..........cooeiiiiiiei e 6-7
6-4. Revised Sweeney-Murphy Master Problem ... 6-12
6-5. Sweeney-Murphy Optimality Theorem Counterexample Diagram............cccceeevevieeneenne 6-24
6-6. Sweeney-Murphy Optimality Theorem Counterexample Chartc.cccoeeerenieeneene 6-25
6-7. Average Time Per SOIULION.........coi it 6-28
6-8. Overall Average Solution TIMES VErSUS Kooiiiiiiiieiececeeeee e 6-28
6-9. Lagrangian Dual of Origina Problem (P).........cccoeiiiiiie e 6-29
Lo O 0T = T D= [T 6-40
6-11. Solution Results vs. Multiplier Type/ SCheduler ... 6-44
6-12. Solution ResUItS VS, Program DESIONccueriieiieiieeieesiee e 6-45
6-13. SOIULION RESUILS VS, K ...t 6-47
6-14. 1teratioNS REQUITE VS. Kttt e 6-48
6-15. Log Distribution of SOIUtION TIMES VS, K.....eevvieiiiiiiiieeseeseeee e 6-50
7-1. Problem HIEIrarChy ..o e 7-2

Table

3-1.
3-2.
3-3.
3-4.
4-1.
4-2.
4-3.

4-5.
4-6.
4-7.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.

5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.

List of Tables

Page
Key Features of Project Scheduling Problems ..o 2-3
ez 010 [0] = o 1S 33
Activity Datafor Example Problem ... 3-22
NUMDES Of VaTADIES ... 3-23
NUMDEr Of CONSIFAINESc..eeieieteeitec et nnne e 3-24
Input Parameters for BaSiC Data..........oceieiiieiiee et 4-6
BasiC Data Variahles...........ooiuieiieiiieie i 4-7
Input Parameters for Project Network Generationcccoeeeeeveeeeneneniee e 4-25
Input Parameters for Inter-Project Network Generation...........cccoeccevereeeseeesceeesieeeeenn. 4-31
Input Parameters for Resource Data Generation............coeoceeereeeeieeesieeesiee e see e 4-41
Input Parameters for Cost Data Generation............ceeeeeeeioeeeneee e see e seee s 4-44
Key Features of Problem GENerators..........cccve e eiiie et 4-48
Problem Generation Parameters Held Constantoooveeeeiienieniieseesecse e 5-27
Parameters Which Are Varied...........ooeoiieiiiiieeeeee e 5-28
REAUCED TESE DBIIGN. ...ttt neesnnennne e 5-28
Rule vs. Average Solution Time (seconds) for 5 ACHVILIES........c.ccevvieiieiiinieeeesee e 5-29
Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities.................... 5-30
Rule vs. Problems Solved to Optimality (Within 300 sec.)
for 10 Activities and Varying MOUES...........ccooiuieiiiiiieieesee e 5-31
Rule vs. Problems Solved to Optimality (Within 300 sec.)
for 10 Activitiesand Varying RTc.oooiiiiiiieie e 5-31
Scheduler vs. OSL Solution Time (seconds) for 5 ACHVILIES..........cccovveriiieiieniereeeee 5-33
Scheduler vs. OSL Solution Time (seconds) for 10 ACHIVILIES.........ccovveriveeieeiienieeeee 5-33
Scheduler vs. OSL Improvement by Restrictiveness for 10 ACtIVIties..........ccoocvvveeeenieenne. 5-33
FUIT TS DESIGN. ...ttt sar e ne e nnnennne e 5-34
T aTE g g R I T o o SRS 5-35
SOIULION RESUIES ...t 5-35
Infeasible ProBIEmMSo e 5-37
InfeasibilitieS by RS &N MOUEcoviiieie e 5-38
Infeasibilities by RS and Percent of Activities with Generalized Precedence (GPR).......... 5-38
Solution Time for 10- and 50-ACtiVity ProjECtS.........cooieiieiiirieesieseeeeeee e 5-48
Time to Optimal (10-ACtIVILY PrOJECES) ...o.veeeiiiieiee et 5-52
Problem Solution Results for k=1, 10, 100, 1000cceeeeeeeeeeeeeeereeeeeeesseesersseessessessseees 5-52
Sweeney-Murphy Optimality Theorem Counterexample DataL...........cccocvveieeieerieeeneene 6-24
Project-Level Generation Parameters WhiCh Varycooceeiieiiiiiciiciecceeecsee e 6-41
Project Level Generation Parameters Held Constantoocveveeriieneeieeneeseesee e 6-41
Program-Level Generation Parameters Which Vary ..o, 6-42
ProBDIEM DESIGN. ... et 6-42
Solution Time vs. Multiplier Type/ SCheduler ..o 6-44
Solution Time vs. Problem DiffiCUlty ..o 6-46
Value of AcCeleration SChEMES..........c.iiiii e 6-47
SOIULTION TIMES VS, K.ttt 6-48
SOIULION TIME VS, K.ttt 6-49
Summary of Key CONIIDULIONScoiiieiiiiieeeeee e 7-4

Xi

AFIT/DS/ENS/01-02

Abstract

Thefield of project scheduling has received a great deal of study for many years with a steady
evolution of problem complexity and solution methodologies. As solution methodologies and
technologies improve, increasingly complex, real-world problems are addressed, presenting
researchers a continuing challenge to find ever more effective means for approaching project
scheduling. This dissertation introduces a project scheduling problem which is applicable across a
broad spectrum of real-world stuations. The problem is based on the well-known Resource-
Constrained Project Scheduling Problem, extended in this dissertation to include generalized
precedence with minimal and maximal time lags and expediting resources. The problem is further
extended to include multiple projects which have generalized precedence, renewable and
nonrenewable resources, and expediting resources at the program level.

The problem presented in this dissertation is one not previously addressed in the literature nor
isit one to which the existing specialized project scheduling methodologies can be directly applied.
This dissertation presents a decomposition approach for solving the problem, including algorithms
for solving the resulting decomposed subproblems and the master problem. This dissertation also
describes a methodology for generating instances of the new problem, extending the way existing
problem generators describe and construct network structures and this class of problem. The

applicability of the methodologies presented is demonstrated through extensive empirical testing.

Xii

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL, RESOURCE-
CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM WITH GENERALIZED
PRECEDENCE AND EXPEDITING RESOURCES

I. Introduction

Overview

The field of project scheduling has received a great deal of study for manyyears with a steady
evolution of problem complexity and solution methodologies. As solution methodologies and
technologies improve, increasingly complex, reakworld problems are addressed, presenting
researchers a continuing challenge to find ever more efective means for approaching project
scheduling. This dissertation addresses a project scheduling problem which is applicable across a
broad spectrum of real-world situations. The total problem is one not previoudly addressed in the
literature nor is it one to which the existing specialized project scheduling methodologies can be
directly applied. This dissertation presents a decomposition approach for solving the problem,
including algorithms for solving the resulting decomposed subproblems and the maser problem.
This dissertation also describes a methodology for generating instances of the new problem,
extending the way existing problem generators describe and construct network structures and this

class of problem.

Background

The scheduling problem introduced by this dissertation is the Mult-Modal, Resource
Constrained, Multi-Project Scheduling Problem with Generalized Precedence and Expediting
Resources (MRCMPSP-GPR/EXP). In most general terms, the goa of the MRCM PSR
GPR/EXP isto identify a start time for each activity in a set of related activitiesin order to
accomplish some objective, where various classes of resources exist and their quantity can be
varied. The way in which activities are related and the objective to be accomplished are what
differentiate the MRCMPSP-GPR/EXP from other scheduling problems in the literature.

A set of related activitiesis referred to as aproject. Projects can take on many forms, ranging
from conducting cancer research or building a highway to running a political campaign or

conducting a military operation. A project may be as complex as designing and building a stealth

11

aircraft or as simple as planning a company picnic. Whatever the nature of the project, its
component activities are related in two ways. Frst, activities may be precedence related. If one
activity cannot start until another activity has finished, the two activities are said to have a
standard precedence relationship. If, on the other hand, the start times of two activities are
related, theactivities are said to have a generalized precedence relationship. More specifically, if
Activity B cannot start until some time after the start of Activity A, then Activity A isa
generalized predecessor of Activity B with aminimal timelag. If Activity B must start before
some time after the start of Activity A, then Activity A isageneralized predecessor of Activity B
with amaximal timelag.

As an example of precedence relationships, consider afew of the activities required to
successfully launch two fighter aircraft. Each fighter must be fueled and each must be loaded with
bombs. Typically, fueling the aircraft must be completed before the bomb loaders can begin their
activity (fuel and bombs do not mix well). Therefore, fueling and bomb loading have a standard
precedence relationship where fueling precedes loading. When it comes time for the fightersto
take off, they can use the same runway, taking off one after the other, or they can use different
runways and take off at the same time. Thekey consideration, though, may not be that one takes
off before the other, but that both take off at relatively close times so that they can rendezvousin
the air and continue the mission without one having to wait along time for the other. In this case,
their takeoff times exhibit a generalized precedence relationship. If either Fighter A or Fighter B
can take off first, but both must take off within a two-minute interval of each other, then one might
say that Fighter A is a generalized predecessor of Fghter B with a minimal time lag of —2 minutes
and a maximal time lag of +2 minutes. In thisway, Fighter B could actually take off before
Fighter A, but in any case, they will both take off within the desired tweminute time interval.

The second way activities can be related is by having a requirement for common resources.
Both fighter aircraft require JP-4 fuel and a crew to do the fueling. If the total amount of fuel
available during an air campaign is fixed, then fuel isa nonrenewable resource; the fuel is gone
once used. Fueling crews, by contrast, arerenewable resources, since they can be used repeatedly,
but their availability at any given time is limited; there may be only two fueling crews on base.
Other resources are doubly-constrained, being both renewable and nonrenewable. Bombs would be
doubly-constrained if their total availability during the air campaign were limited (making them

nonrenewable) and if the number of bombs available at any given time were limited (making them

1-2

renewable). Thiswould be the case if a base could store only up to a specific number of bombsin
its bomb dump. Bomb loaders could not load more bombs at any given time than there are bombs
currently in the bomb dump, but the bomb dump can be restocked up until thetime that the tota
number of bombs available for the campaign are exhausted.

Finding a start time for each activity in a project such that the precedence relationships are
maintained and total usage of resources is within the limits of their availability is the act of
scheduling. To further complicate the scheduling process is the potential for multiple activity
execution modes. Activity execution modes are alternate ways to accomplish an activity and define
the duration and resource requirements of theactivity. Suppose that the bomb dump in the above
example needed to be replenished. There are a number of ways this could be done. The bombs
could be loaded on two G5 aircraft and flown straight to the base. This might take a single day.
The bombs could also be loaded on a supply ship, ferried to the nearest port, and then loaded on
flatbed trucks for the rest of the journey to the base. This might take two weeks. Either option for
restocking the bomb dump is a legitimate execution mode, and which node is chosen depends on
how much time and how many G5, ships, and flatbed trucks are available.

The choice of which mode is used to restock the bomb dump will likely affect other activities
which depend on having bombsin the dump. The choice of mode fo restocking is, at the same
time, affected by other activities and their execution modes. Suppose the fighters will carry either
four 2000-pound bombs or eight 500-pound bombs (two possible modes for striking targets). If
the bomb dump is out of 2000-pound bombs and the ship-flatbed mode is used to replenish them,
either fighters will have to use 500-pound bombs for two weeks or strike missions will have to be
delayed. Consequently, the G5 mode might be preferred. Unfortunately, if G5 aircraft are used
for other activities and are unavailable during this time, the ship-flatbed mode may be the only
mode possible. (This dependency of activities on other activitiesis, in fact, a key motivator for
careful a priori scheduling.)

The careful selection of an execution mode for each activity is an important part of resolving
resource conflicts and is an integral part of scheduling in the presence of multiple modes. Which
modes are selected will determine how long it takes to complete a project and will detenine which
resources are critical and which are not. Resource limitations may force a scheduler to choose
non-preferred modes or to delay activities. In many situations, fortunately, resource limitations

may be eased through expediting resources. The concept of expediting resources is smply to

1-3

increase the availability of a critical resource to provide hopefully better scheduling options. If
additional C-5 aircraft could be obtained, then the bomb dump might be replenished sooner and
better weaponeerirg modes made possible for strike missions. In this situation, obtaining those G
5s seems alogical decision. However, there isatradeoff. While regularly available resources are
assumed to be available at no cost (they arecompany-owned, so to speak), expediting resources
are available only at acost. Expediting resources might be purchased, rented, or leased. To a
construction company, they might be temporary workers. For the G5s, they might be aircraft that
need to be refurbished, they might be barowed from another theater (in this case, the cost may not
be dollars but opportunity cost to the lending theater), or they may be civilian aircraft with similar
carriage capacity leased from a commercial air freight company.

While modes and expediting resources both give schedulers greater flexibility, they are
fundamentally different. Modes typically trade greater resource requirements for shorter durations,
while expediting resources affect the availability of resources (i.e., demand vs. supply). Thus,
modes enable shorter activity durations, while expediting resources enable a morecompact
schedule. In other words, a scheduler can always select the modes which give the shortest activity
durations possible. This selection, however, may be resourcefeasible only if some of the activities
are delayed. Expediting resources raise the limits on resource availability and can reduce the
number of activities that need to be delayed (hence, a more compact schedule).

To this point, the fundamentals of precederce relationships, resources, and activity execution
modes have been explained. These are the characteristics of the MRCMPSRGPR/EXP that
constrain which choices of execution modes, start times, and expediting resource use form feasible
schedules. Which of these feasible schedules is best, though, depends on the objective of the
scheduler. For the MRCMPSP-GPR/EXP, avariety of objectives are available.

The most general objective of the MRCMPSRGPR/EXP is to minimize the schedule cost.
Costs come in three forms. As previously mentioned, using expediting resources incurs a cost.
The mode and start time selected for an activity may also incur acost. In aconstruction activity,
the decision to hire skilled labor or unskilled labor is a mode choice whichimpacts the labor cost
associated with the activity. The activity may also require a cash outlay which increases over time
so that adelay in the start of the activity resultsin an increase in the cash outlay. The third type of

cost isthe project competion cost. Many projects are either rewarded for finishing earlier than

1-4

planned or penalized for finishing later. The bonus/ penalty is a direct cost to the project (note
that abonusis just a negative cost).

Other scheduling objectives are special cases of the cost minimization objective. Some of these
are described in Chapter I11.

The final characteristic of the MRCMPSP-GPR/EXP isits multi-project nature. The
importance of identifying a problem as representing a single project or as having multide projects
isin the decomposahility of the problem. In essence, a singleproject problem and a multi-project
problem are fundamentally the same except that the multi-project problem has distinct sets of
activities in which the activities are in some way more strongly related. A set of activities, for
example, may use some types of resources not used by any other set. Additionally, the activitiesin
a set may have many precedence relationships with other activitiesin the set, but very few with
activities in other sets. When a problem can be subdivided into such distinct sets, the sets are
tagged asprojects and the set of projectsis called a multi-project program. By their nature, the
multi-project program demonstrates a blockangular structure and can be decomposed using
procedures such as that proposed by Sweeney and Murphy (1979). The SweeneyMurphy
approach is used in this dissertation to facilitate the solution of decomposable problems.

Though the MRCMPSP-GPR/EXP has not been addressed in the ogen literature, the literature
is full of methodologies for solving related project scheduling problems. Generally, attempts to
solve project scheduling problems with more traditional techniques, such as general integer
programming (I P) approaches, have been unsuccessful (Demeulemeester and Herroelen, 1992:
1803). Researchers have, therefore, turned towards the development of specialized algorithms for
solving project scheduling problems. This dissertation develops such an approach for the
MRCMPSP-GPR/EXP, including agorithms for solving single- and multiple-project instances.

There has also been an effort in the literature to develop problem generators to provide
consistent test cases for the multitude of solution methodologies. Unfortunately, most use
measures of network complexity which provides inconsistent and confusing results (see Chapter
V). By contrast, there is a measure of network complexity which is recognized to be far superior,
but only one generator attemptsto use this measure. Even tha, this generator constructs networks
using the obsolete measure and then calculates the corresponding value of the superior measure. |If
the network has the desired value, it is kept; otherwise, it is discarded and another network is

constructed and testel.

1-5

This dissertation develops a methodology which constructs networks using the superior
measure directly. The network methodology is then built upon to develop a problem generator
which is capable of generating all of the characteristics of the MRCMPSP-GPR/EXP. No other
generator is currently known to provide standard and generalized precedence, expediting resources,
and multiple projects.

Significant progress has been made since the 1950s in the field of project scheduling. Even so,
major gaps still exist. As computational efficiency and power increase, new problems can be
proposed to consider these gaps. This dissertation considers such a problem area when considering

multi-modal problems with expediting resources.

Research I ssues

The problem of scheduling multi-project programs with multiple modes, generalized
precedence, and expediting resources has not been addressed in the project scheduling literature.
No specialized solution methodologies have been developed to solve the problem and standard
integer programming approaches are currently inadequate for solving problems of thistype in an
operationally reasonable amount of time. 1n addition, no existing problem generator is capable of
constructing problems with the characteristics of the MRCMPSRGPR/EXP. Furthermore, the
problem generators that are presented in the literature generally use measures of network

complexity that poorly reflect the true nature of project networks.

Research Objectives

The research presented in this dissertation fills anumber of voids in the expanding field of
project scheduling. Specifically, the research accomplishes the following objectives:
1. Itintroduces the MRCMPSP-GPR/EXP to the project scheduling literature, including a
mathematical formulation of the problem. The problem includes:
(&) Multiple activity execution modes.
(b) Renewable, nonrenewable, and doubly-constrained resources.
(c) Standard and generalized precedence between activities. Generalized precedence
includes both minimal and maximal time lags.
(d) Expediting resource availability which can be used by any activity requiring that

resource.

1-6

(e) An objective to minimize project / program costs, including mode costs, project /
program completion costs, and expediting resource costs.

(f) Multiple projects exhibiting characteristics (a) — (€) at both the project level and
program level.

It presents a problem generator capable of constructing instances of the MRCMPSR

GPR/EXP.

(&) The generator produces problem instances with all of the characteristics of the
MRCMPSP-GPR/EXP.

(b) The generaor constructs project networks in away which directly exploits a measure
of network complexity which reflects the nature of networks more accurately than the
measures more commonly used.

It develops a specialized algorithm for solving single project instances of the MRCMPSP-

GPR/EXP.

() The algorithm is based on an approach for resourceconstrained project scheduling
from the literature, extended for multiple modes, generalized precedence with minimal
and maximal time lags, expediting resource availability, and a cost-minimizing
objective function.

(b) The algorithm is designed to generate a set ofk-best solutions to the problem rather
than a single optimal solution.

It uses the Sweeney-Murphy Decomposition principle to decompose multiproject

instances of the MRCMPSP-GPR/EXP for more efficient scheduling.

(a) Alternate methods for finding multipliers used to relax the coupling constraintsin the
origina problem are developed.

(b) Oncethe original problem is decomposed into subproblems, the specialized algorithm
developed for single-project instances of the MRCMPSP-GPR/EXP is used to solve
the subproblems.

(c) Analgorithm for solving the master problem is developed.

(d) Techniquesfor both speeding solution of the master problem and for accelerating the
iterative solution process are developed.

(e) Anerror in the approach as originally presented by Sweeney and Murphy (1979) is
explained and the impact of that error is described.

1-7

5. The problem generator designed in Objective 2 is used to generate test instances which are

solved to teg the methodologies developed in Objectives 3 and 4.

Approach

The project scheduling literature has been reviewed to identify project scheduling problems,
and their mathematical formulations, which have characteristics in common with the MRCM PSP
GPR/EXP. A number of such problems have been found. Where possible, formulations of
relevant objective functions and constraints have been borrowed from the literature and modified,
as necessary, to reflect characteristics unique to the MRCMPSRP-GPR/EXP (e.g., extending
constraints for multiple projects and expediting resources). A complete mathematical formulation
of the MRCMPSP-GPR/EXP is presented in Chapter 111.

Chapter 111 also introduces a decomposition of the problem, using classical Lagrangian
relaxation. Specifically, the multi-project nature of the MRCMPSP-GPR/EXP demonstrates a
block-angular structure which can be exploited to decompose the problem into a number of semi
independent subproblems and a master problem. The subproblems represent the componet
projects, each with its own set of precedence and resource constraints. The master problem
enforces the program-level precedence and resource constraints. Sweeney and Murphy (1979)
present an approach for solving the decomposed problem by, first, geneeting a set of k-best
solutions to each subproblem. The subproblem solutions are then combined to form a master
problem (arestriction of the original problem) which is solved to find a combination of subproblem
solutions (one solution from each subproblem) which is feasible to the program-level constraints
and which is optimal among all such combinations. Sweeney and Murphy provide a condition
under which the optimal solution to the master problem is also optimal to the original problem.

The subproblems are solved using a specialized algorithm developed in Chapter V. The
algorithm is an implicit enumeration scheme based on the algorithm by Talbot (1982). The
algorithm has been extended to incorporate the characteristics of the MRCMPSPGPR/EXP. The
algorithm has also been modified to generate a set ofk-best solutions, rather than a single optimal.
The resulting algorithm is further extended with a set of bounding and feasibility rules designed to
speed the solution process. Though designed specificaly to solve the subproblems of a
decomposed multi-project problem, the specialized algorithm of Chapter V is equally applicable as
a stand-al one scheduler for single-project instances. Extensive testing of the algorithm is reported,

1-8

including a comparison of results to those obtained by solving the test problems using a standard
commercial |P solver.

Chapter VI presents a procedure for relaxing / decomposing a multiproject problem and then
for iteratively solving the subproblems and the master problem. The basic procedure is based on
the approach proposed by Sweeney and Murphy (1979). Sweeney and Murphy, however, do not
prescribe a methodology for solving either the subproblems or the master problem. In their paper,
they use a standard | P approach for sdving both the subproblems and the master problem. The
procedure proposed in Chapter VI uses the algorithm developed in Chapter V for solving the
subproblems. Chapter V1, then, develops an implicit enumeration algorithm for solving the master
problem.

Chapter V1 also proposes alternative approaches for generating the multipliers used to relax
the original problem. These approaches are based on (1) an approach by Nauss (1979) for
estimating the marginal benefit of resourcesin an IP and (2) the concept ofAverage Utilization
Factor described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985). Finally, Chapter
V1 provides additional schemes for accelerating solution of the master problem. Testing of the
decomposition approach, using alternative multipliers and acceleration schemes, is reported.
Results are compared to solving the problems inwhol e (using the algorithm of Chapter V) versus

through decomposition.

Summary

This chapter introduced the subject scheduling problem, provided an overview 6 the research
issues and objectives, and summarized the research approach. Chapter 11 presents areview of the
pertinent literature on project scheduling and problem decomposition. Chapter 111 provides a
mathematical formulation of the scheduling problem and shows how the problem may be
decomposed. Chapter IV details a generator for constructing test problems, including an algorithm
for generating network structures using an improved measure of network complexity. ChaptersV
and V1, respectively, develop algorithms for solving single-project and multi-project instances of
the problem. Finally, a summary of the research, its contributions, and suggestions for future

research are outlined in Chapter VII.

1-9

Il. Literature Review

Introduction

The literature is replete with models representing a wide variety of project scheduling
problems. This chapter reviews the models which provide a foundation for the MultiModal,
Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and
Expediting Resources (MRCMPSP-GPR/EXP). The chapter also describes the myriad of
approaches developed to solve project scheduling problems, including the use of problem
decomposition methods. The approaches ae further evaluated in ChaptersV and V1 for their
applicability to the MRCMPSP-GPR/EXP.

Mathematical formulations are provided for the more important problems discussed in this
chapter. Note that the equations used in each of the model formulations aresequentially numbered.
Once an equation has been numbered, any reuse of the equation will bear the original number.
This consistency in numbering will provide insight into how one model builds upon another. Note
also that the abbreviations used to dende the different scheduling problems are summarized in
Appendix A for easy reference. However, the notation used in the problem formulations may not,
in all cases, be consistent with the notation included in Appendix A. The formulations below retain
the variable definitions given by the original authors and may, therefore, change from one
formulation to another. Consequently, each variable used in a formulation is defined for that
formulation only. In those casesthat a variable in this chapter is inconsistent with the variables

listed in Appendix A, the inconsistent variable is not used in subsequent chapters.

Problem Hierarchy

The next section provides areview of project scheduling problems from the literature, most of
which are special cases of the MRCMPSP-GPR/EXP. To set the stage for this review, Figure 21
diagrams the hierarchical relationship of the more important problems and the MRCM PSP
GPR/EXP. Each problem is numbered so it can be easily referred to in the subsequent sections.
Note that Problem 1, at the bottom of the diagram, is the resourceunconstrained Project
Scheduling Problem. At the top of the diagram, Problem 12, is the MRCMPSRGPR/EXP.
Intermediate problems areconstructed by adding characteristics to problems at alower level a by

relaxing characteristics of problems at a higher level.

2-1

12

Multi-Modal,
Resource-Constrained
Multi-Project
Scheduling Problem
w/ Generalized Precedence
& Expediting Resources

4
9 10 11
Multi-Modal, Generalized, Multi-Modal,
Resource-Constrained Multi-Modal, Resource-Constrained
Project Scheduling Problem Resource-Constrained Project Scheduling Problem
w/ Generalized Precedence Multi-Project w/Expediting Resources
Scheduling Problem y
Maximal A
Lags
7 8
Generalized, Multi-Modal,
Multi-Modal, Resource-Constrained
Resource-Constrained Multi-Project
Project Scheduling Problem Scheduling Problem
4 4
A
3 4 5 6
Generalized, Multi-Modal, Resource-Constrained Resource Critical
Resource-Constrained Resource-Constrained Multi-Project, Project Crashing Problem
Project Scheduling Problem Project Scheduling Problem Scheduling Problem
A A A A
Minimal Multiple Multiple Additional
Lags Modes Projects Resources
2
Resource-Constrained
Project Scheduling Problem
A
Constrained
1 Resources

Project Scheduling Problem

Figure 2-1. Problem Hierarchy

Table 2-1 isalso provided as a tabular summary of the most important characteristics of the

problems included in Figure 2-1.

2-2

Table 2-1. Key Features of Project Scheduling Problems

o
<
w
g
¥ o %0
O ||
a oo 1P d|Z|o(L
A l?®|D|D|a OO |a =
&la|a|a Q2| |0O|0
L Rc|o|s|IRIE|I0|C|s|E|®
HIOIE|ZIC|OIS|EIZE|O|IsS|s

Qx| =2|x|x|0|=|=
PN R A A R I R I I e B I W o
AN M| T (O[O |~ |0 |||
Standard Precedence XIX X[XX X[X| X[X]|Xx]|x]|X
Generalized Prec (Min Lags) X X X | X X
Generalized Prec (Max Lags) X X
Multiple Modes X X | X | X|X|X]|X
Expediting Resources X X | X
Multi-Project Problems X X
w/Program Nonrenew Res X X
w/Program Renew Res X
w/Time-Related Projects X
Regular Measure of Perf XX | X | X[X|X|[X]|X|X|X]|X]|X
Non-Regular Measure of Perf X X | X

Single-Project Scheduling

This section reviews single-project scheduling problems and the approaches used to slve
them. The section begins with the resourceunconstrained Project Scheduling Problem as the basis
for the subsequent problems. Resource constraints, activity crashing, expediting resources, and

generalized precedence are then discussed and related poblems are introduced.

The Project Scheduling Problem The Project Scheduling Problem (PSP), Problem 1 in Figure
2-1, datesto the late 1950s (see Kelley, 1961) when the Critical Path Method (CPM) was
developed (Icmeli, 1993). The PSP is the problem of €heduling a set of activities in a project to

minimize the makespan of the project. Activities have fixed and known durations. Any given pair

of activities (graphically represented by nodes in the project network) may be related by smple

2-3

finish-start precedence relationships (represented by network arcs) where one activity must finish
before another may start. The mathematical formulation of the problem is given by:

Minimize S, (@D}
subject to s;?s?d, 7?1?70, 2
s; ? 0andinteger, ?] 3
where

§ = dtart time of activity |

d; = duration of activity |

J = termina node or activity

O, = set of predecessors of activityj

The PSP may be solved using the CPM. The CPM alows the activities of a project to be
scheduled in a way which maintains the precedence relationships between the activities and which
minimizes the duration of the project. Thisis done by starting each activity as soon as all of its
predecessors are canplete (see Shtubet al., 1994: 338-341). These start times are specifically
referred to astheearly start times of the activities. The completion time of the last activity
completed is theminimum completion time of the project.

A backwards recursion may also be made on the network where all activities are scheduled to
dtart aslate as possible while still completing the project at its minimum completion time and
maintaining the precedence relationships. These are thelate start times of the activities. Those
activities whose early and late start times are identical are called critical activities. Each network
path consisting only of critical activitiesis called a critical path (from which the nameCritical
Path Method comes). Kelley (1961) providesthe mathematical basis for the CPM.

While the applicability of the CPM is limited because it deals only with the time aspect of the
project without consideration for resource restrictions (see Icmeli, 1993), it remains a useful tool.
It isused in many enumeration schemes to provide activity start time bounds which reduce the

solution space which needs to be enumerated.

Resource Condtraints A significant limitation of the PSP is that resources are assumed to be

available at ample enough levels such that they do not constrain the schedule. In redlity, project

resources are often limited to the point where the start times of some activities have to be delayed

2-4

because insufficient resources are available. The consideration of limited resources has given rise
to amyriad of resourceconstrained problems, the most basic of which is the ResourceConstrained

Project Scheduling Problem (RCPSP), Problem 2 in Figure 2-1.

The RCPSP has the same finish-start precedence structure and makespan minimization
objectivefunction as the PSP. However, each activity now requires a certain amount of some
limited resources. The demand for aresource by an activity is assumed constant for the duration
of the activity and resource availability per period is constant. Generally, there are insufficient
resources in one or more periods to schedule all of the critical path activities at their earliest start
time. (Consequently, the CPM alone is insufficient for developing a feasible schedule.)

One of the earliest formulations of the RCPSP was proposed by Bowman (1959) for job shop
scheduling. In Bowman’s formulation, shown below, G1 variables describe whether or not an
activity isin progress in any given time period. Constraints (5) assure that each activity isin
progress during the same number of time periods as the activity has units of duration. Constraints
(6) prohibit activity preemption (i.e., an activity being interrupted once started). Constraints (7)
enforce precedence relationships by assuring that, if activity i precedes activity j, activity j can be
in process at timet* only if the number of periods that activityi isin process before timet* is
greater than or equal to the duration of activityi. Resource useislimited by Constraints (8).

Finaly, the objective function isto minimize the project duration.

ty J
Minimize 7 477 x, (4
t2t, 71
;2d;?1
subject to ?x.?d;, ?j (5)
t2e;
1,2d;21 , ,
d,x, 2dX9,0? ? X, ?2d;, t? gl ?2247?] (6)
t?t* 22
tr?1
dXe ?? %, ?2i?20,j,t* (7)
t?1
J
? o 2Ry ?0.t (8)
71
x, 20,17, ?j.t (9)

where

2-5

X;, = 1if activity j isin process at timet ; O, otherwise

= terminal node or activity

J
d = duration of activity

g = early start time of activity |

l; = latestart time of activity |

to = early project completion time

t; = late project completion time

riq = requirement for resourceq by activity j
Ry = availability of resource g intimet

O, = set of predecessors of activity|

Since, in Bowman's formulation, an activity requires a variable for each time period from the
activity’s earliest possible start time to its latest possible finish time, this formulation generally
requires many more 0-1 variables than later formulations (described next). Bowman gives an
illustrative job shop example with three products and four machines. He shows that even this
small problem would require 300 to 600 variables, depending on the number of time frames
chosen, and even more constraints (Bowman, 1959: 624). The Bowman formulation, however, has
still found utility in later research efforts (e.g., Deckro and Hebert, 1989).

Pritsker et al. (1969) developed a 0-1 formulation of the RCPSP which provides considerable
economy over the Bowman formulation. Their formulation, the PritskerWatters-Wolfe (PWW)
model, is based on 0-1 variables which indicate the time periods in which an activity may be
completed. Since the set of possible completion times of an activity canbe a small subset of all of
the times an activity may be in progress, typically far fewer variables are required.

In the PWW model, shown below, Constraints (11) assure that each activity completes only
once. Precedence relationships are enforced by Consraints (12) while resource limits are enforced
by Constraints (8). The objective shown isto minimize the project makespan.

Minimize ’_T)txJt (20

t?1

!
subject to ?x.?1, ?] (11)

2e;
t?e;

2-6

l lj
g, ?? tx, ?2d, ?2i?20;,] (12)

t?q t2g,
J

? X ?Re. 20t (8)
j?1

x, 20,17, ?j.t 9)

where
X;, = 1if activity j completes at timet ; O, otherwise

J = termina node or activity

d; = duration of activity |

g = early start time of activity j

l; = late start time of activity j

T = late project completion time

riq = requirement for resourceq by activity j
Ry = availability of resource g intimet

O, = set of predecessorsof activity |

In an example, Pritsker et al. present athreeproject, eight-activity (total), threeresource
problem. Their formulation requires 33 variables and 37 constraints (Pritsker et al., 1969: 107).
Thisis an improvement over the 72 variables and 125 constraints (50 variables and 94 constraints
with careful size reduction) required by the Bowman formulation of the problem (Pritskeret al .,
1969: 107). The PWW model has been used extensively by other authors and is the model upon
which the mathematical formulation in Chapter 111 for the MRCMPSP-GPR/EXP is based.

Blazewicz et al. (1983) show that the RCPSP is a generalization of the job shop scheduling
problem and, as such, belongs to the NRcomplete complexity class. Consequently, the breadth d
approaches reported for solving the RCPSP has met with mixed success. The remainder of this
subsection discusses the breadth of solution approaches for the RCPSP.

Mathematical Programming. Pritsker et al. solve their example problem using a general
integer programming (I1P) code developed by Geoffrion (Pritsker et a., 1969: 106). Other authors
have also used general | P approachesto solve the RCPSP g.g., Bowman, 1959; Patterson and
Huber, 1974; Patterson and Roth, 1976; Deckro and Hebert, 1989; Icmeliand Rom, 1996). One

2-7

of the characteristics of the RCPSP which has been exploited by some authors to improve the
efficiency of general |P approaches to the RCPSP is the existence of special ordered sets (SOS) of

variables.

Beale and Tomlin (1969) introduced the concept of SOS variables. A special ordered set of
variables of type 1 (SOSL) isa set of variables (continuous or integer) within which exactly one
variable must be non-zero. A special ordered set of variables of type 2 (SOS2) is a set of variables
within which at most two can be norrzero. Inthe case of SOS2 variables, the two nonzero
variables must be adjacent in the ordering given to the set (Williams, 1985: 173). Constraints (11)
are SOS1 variables since only one x;; will be non-zero for each activity j.

The restriction that a set of variables belongs to SOS1 or SOS2 is easily modeled using binary
variables and constraints, as in Constraints (11). The great computational advantage to be gained,
however, comes from treating these sets algorihmically (Williams, 1985: 173). Bean (1984)
points out that a general n-variable binary problem has an enumeration tree with 2" branches. If

the variables are separated into m SOS1 sets, where theith set containsn; variables and

m m
n?? n, , then only ? n, of the 2" branches mentioned above are feasible in the multiple choice
i21 71

constraints defined by this partitioning. Bean presents a branch-and-bound algorithm which
exploits SOS1 variables. The algorithm is successfully applied to a number of problems with up to
400 binary variables. Tripathy (1984) uses a branch -and-bound algorithm with SOS1 variables as
part of a solution methodology for the school timetabling problem. He solves a problem with 3384
variables.

Despite the general usefulness of SOS variables, Patterson (1984) reportsthat in his
comparison of exact approaches for solving the RCPSP, one approach that was considered for the
comparison was solving the problem using a general purpose G1 program solver using Tomlin's
integrated SOS procedure. The approach was eliminated because it could solve only the smallest
of problem instances in the time imposed. Demeulemeester and Herroelen (1992: 1803) also report
that, while the RCPSP is typically formulated as a straightforward integer program, standard IP
approaches have generally proven unsuccessful. Researchers have thus turned to specialized

algorithms for finding exact, or optimal, solutions (Demeulemeester and Herroelen, 1992: 1803).

Graph-Based Approaches. Balas (1970) represents the RCPSP as a digunctive graph

with the goal of eliminating the need to consider individual time periods over the project horizon.

2-8

Solutions are obtained by finding a minimum-arc disunctive graph subject to stability conditions
Stability is represented by a generalized coefficient of internal stability — a check for feasibility
with respect to available resources. Gorenstein (1972) shows how the generalized coefficient of
internal stability can be calculated using a maximum-flow computation on a bipartite graph. While
the network representation of the problem eliminates the dependence of the number of variables on
the time horizon, Christofideset al. (1987) suggest that the procedure proposed for guaranteeing
the feasibility of the solution requires a large computationa effort that limits the use of the

algorithm.

Davis and Heidorn (1971) present an algorithm where activities are broken into unitlength
tasks. An A-network is formed where nodes represent subsets of tasks ad arcs connect subsets
which could be completed on adjacent days. The minimization of the project duration, then, isa
matter of finding a path from start to finish in the A-network which contains a minimal number of
arcs. The advantage of this procedure is that the subdivision of activities into tasks of unit length
easily alows for job splitting (without any additional computational effort) and activity resource
requirements can vary over the duration of the activity. The drawback to the procedure ighat the
number of subsets grows rapidly with problem size and only very small problems can be handled
(Davis and Heidorn, 1971: B-815; Christofides et al., 1987: 263). Davis and Heidorn test their
algorithm on 65 problems, each containing 50 to 95 unitduration tasks (30 original activities) and
involving 3 resource types. Optimal solutions were found for 48 of these problems (Davis and
Heidorn, 1971: B-815).

Implicit Enumeration. Most implicit enumeration methods use partial schedules which are
associated with the nodes of an enumeration tree. Branching from nodes equates to extending
partial schedules. Dominance rules and lower bounds serve to reduce the number of alternatives

for extending partial schedules. Methods differ in the way they branch and prune.

Talbot and Patterson (1978), rather than using a 0-1 formulation of the problem, represent the
problem in structured, compact integer arrays which are directly employed by the solution
procedure. This representation results in considerable memowy savings. The solution procedure
uses implicit enumeration of al feasible schedules, relying on network cuts to fathom partial
schedules which cannot lead to an improved solution. Talbot and Patterson conduct a comparative
study of their algorithm using 50 test problems. They show their algorithm to be more efficient

than other enumeration procedures and competitive with the best available branchand-bound

29

procedure, while requiring considerably less computer storage. They claim, however, that the
likelihood of obtaining an optimal solution for projects containing more than 50 activities within a
reasonable amount of computation time islow. In fact, they encountered a few projects containing
as few as 35 activities that could not be solved in a reasmable amount of time with their approach
in 1978 (Talbot and Patterson, 1978: 1172).

Stinson et al. (1978) present a branch-and-bound procedure where nodes in the solution tree
correspond to precedence and resource feasible assignments for a subset of theactivities of the
project. In acomparison of exact approaches for solving the RCPSP, Patterson (1984) determines
Stinson’s Procedure to be the fastest of the procedures tested at that time. Patterson’s 110 test
problems include up to 50 activities and 3 resource types.

Christofides et al. (1987) and Demeulemeester and Herroelen (1992) use the concept oflelay
alternatives. Christofides et al. (1987) present a delay alternative branch-and-bound agorithm
based on the idea of using digunctive arcs for resolving conflicts that are created whenever sets of
activities have to be scheduled whose total resource requirements exceed the resource availabilities
in some periods. For fathoming branches, the authors examine four lower bounds and
computational results appear promising. Demeulemeester et al. (1994), however, present a
counterexample to show that the procedure proposed by Christofide®t al. does not guarantee an
optimal solution. Demeulemeesteret al. suggest a modification to this procedure which aes
guarantee optimality. Their modification expands the set of source nodes considered for delay arcs
to ensure that partial schedules which may lead to an optimal schedule are not fathomed
prematurely. Demeulemeester et al. test their modified approachusing Patterson’s 110 test
problems and find that their approach optimally solves all of these test problems.

Demeulemeester and Herroelen (1992) present another delay alternative branchand-bounding
procedure where the nodes represent partial schedulesin which finish times have been temporarily
assigned to a subset of activities of the project. Activities are scheduled as soon as precedence and
resource constraints allow, but they may be delayed based on decisions made in later stages of the
search process. The algorithm shows promising results, being an average of aimost 12 times faster
than the best-first procedure by Stinson et al. previously reported by Patterson (1984) to be the
most effective and efficient on the problem set considered. The algoithm is tested on projects with

at most 51 activities and 3 resources.

2-10

Other Approaches. Patterson and Huber (1974) present a minimum bounding algorithm
and a maximum bounding agorithm to solve the 01 formulation of the problem. The minimum
bounding dgorithm begins by fixing the project horizon at the CPM shortest possible project
duration and then solving the 0-1 problem to determine feasibility. If feasible, the schedule based
on the CPM duration isoptimal. If infeasible, the project horizon is extended by one time unit and
the O-1 problem solved again to determine feasibility. The algorithm continues until afeasible (and
consequently, optimal) schedule is found. The maximum bounding algorithm is similar except that
afeasible schedule isfirst determined using an appropriate heuristic. The project horizon isthen
set at one time unit less than the project duration found with the heuristic and the 61 problem
solved for feasibility. If infeasible, the duration from the heuristic solution is optimal. |If feasible,
the time horizon is again shortened and the process continued until there are no feasible schedules
for agiven project horizon. An optimal schedule is the last feasible schedule. Patterson and Huber
demonstrate this approach to be nore effective than 0-1 programming without bounding. On a set
of 11 test problems, they show that less time was involved in examining a series of 31 problems
for feasibility than was involved in solving one 0-1 problem optimally (Patterson and Huber, 1974:
997).

Zamani (under review) presents an algorithm which finds an optimal solution or a heuristic
solution within a certain range of the optimal solution. His algorithm uses heuristic estimates
which are continuoudly updated during the search process. At each level of the search tree, the
heuristic estimates of partial solutions are updated by comparing them with those of their
neighbors. Theinitial heuristic value of every partial schedule is alower-bound on the completion
of the project. Zamani reports that solution times compare favorably to other optimal agorithms,
and the algorithm provides guaranteed performance bounds unlike other heuristics.

One variant of the RCPSP is the Resource Availability Cost Problem (RACP), proposed by
Demeulemeester (1995). The RACP is the problem of minimizing renewable resource availability
costs subject to a project due date. (Renewable resources are those which are limited on a per
period basis.) More precisely, the per period availability of aresource isto be the same for all
periods, but the objective of the problem isto determine what this resource level should be in order
to complete the project by afixed due date at minimal cost for resources. Demeulemeester uses a
minimum bounding strategy to solve this problem. The strategy starts with minimal resource

availabilities and solves a resource-constrained project scheduling decision problem to determine if

2-11

afeasible schedule exists at the current levels of resource. If so, the schedule is optimal. 1fnot,
resource availabilities are incrementally increased and the decision problem solved until afeasible,
and optimal, schedule isfound. The technique was successfully applied to a modification of
Patterson’s 110 test problems.

Activity Crashing. Activity crashing isthe process of shortening the duration of an activity.

The following discussion outlines a number of scheduling problems which differ in the way they

crash an activity’ s duration.

2-12

Minimal Cost Project Network Problem. Wu and Li (1994) and Kamburowski (1995)
discuss the Minimal Cost Project Network Problem (MCPNP). The concept of the problemisto
crash a project network, without resource constraints, to minimize project costs. The direct costs
of crashing activities are offset by indirect costs based on the duration of the project. Wu and Li
(1994) outline a method for solving the problem using a minimum cut set algorithm. The key steps
of the algorithm identify normal project durations, minimum cut sets, and the capacities of those
cut sets. Kamburowski (1995), however, shows that the method of Wu and Li does not guarantee
an optimal solution. He outlines his own optimal method which is also based on a minimum cut set

and demonstrates the approach on an example with four activities.

Project Time/Cost Tradeoff Problem. The Project Time/Cost Tradeoff Problem (PTCTP)
allows a project to be shortened by crashing the duration of one or more if its activities. That is,
each activity has a normal duration and a crashed duration and, at a cost, the duration of an
activity can be reduced from its normal duration to as short as its minimum crashed duration. The
objective is to determine the start time and duration of each activity in order to complete the project
by afixed due date while minimizing the cost of crashing. The methods demonstrated for solving
the problem include a minimum cut set algorithm (Phillips and Dessouky, 1977), alabeling
algorithm (Elmaghraby, 1977: 58-118; Ford and Fulkerson, 1962: 151-162), a CPM time-cost
tradeoff procedure (Moderet al., 1983: 237-251), and a Benders' Decomposition (Kuyumcu and
Garcia-Diaz, 1994). While the crashing cost function is generaly linear, Elmaghraby (1977)
extends the model to include strictly convex cost functions, concave cosiduration functions, and

discrete norrincreasing functions.

Activity Duration Crashing Problem. The Activity Duration Crashing Problem, proposed
by Deckro and Hebert (1989), is a discrete extension of the Project Time/Cost Tradeoff Problem,
incorporating resourcerestrictions as well. The standard objective is to determine the start time and
duration of each activity which minimizes the project duration subject to a budget for crashing and
subject to resource availahilities. Deckro and Hebert base their model onBowman’'s (1959) 0-1
formulation of the Resource Constrained Project Scheduling Problem. They provide afive
activity, one-resource example which was solved using a commercial integer program solver (using
branch-and-bound).

2-13

Multi-Modal, Resource-Constrained Project Scheduling Problem. The previous two
problems seek to shorten the duration of activities from anormal duration to a crashed duration,
typically at a per-period cost for crashing. The Multi-Modal, Resource-Constrained Project
Scheduling Problem (MRCPSP), Problem 4 in Figure 2-1, is similar in that it allows tradeoffs
between activity duration and cost. However, thecost incurred for changing the duration of an
activity is not necessarily a monetary fee charge for each period the activity duration is shortened.
Instead, thecost for changing the duration of an activity isincurring a different mix of required
resources. More precisely, each activity can be performed in one of multiple execution modes.
The mode of execution determines the actvity’ s duration and resource requirements. For example,
the U.S. Air Force's Air Mobility Command (AMC) may have the task of airlifting troops and
supplies from the U.S. to aforward operating base (FOB) overseas. Thistask may have several
possible execution modes. One mode may involve airlifting the troops and supplies, via G5
aircraft, from the U.S. to a main operating base (MOB) overseas and then to the FOB using G130
aircraft. An alternative mode may involve airlifting the troops and supplies directly from the U.S.
to the FOB using C-17 aircraft. Obvioudy, the time and resources required to accomplish the task

depends on the execution mode chosen.

The standard objective of the problem is to minimize the duration of the project, subject to
resource constraints, by determining the start time and execution mode for each activity. The
problem belongs to the NRHard complexity class (Kolisch, 1995: 26).

Following is the mathematical formulation of the MRCPSP. The model is almost identical to
that of the RCPSP, the main difference being an additional index, m, is added to the decision
variable to indicate which mode is selected for an activity.

;
Minimize 72 txy, (13)

t?1

lj M;
subject to ? 7?7 xn?1, ?j (14)

t?e; m21

i M lj M
23 04 27 7 i 20

im s ?i?Oj,j (15)
t?7¢ m?21 t7e; m?1
J My
? 7 Mg Xjme ? th, ?q,t (16)

j?21m?1

2-14

X 20,07, ?j,mt (17)

where
X = Llifactivity | isexecuted in modem and completes at ime't ; O, otherwise
J = terminal node or activity
dm = duration of activity] when executed in modem
g = early start time of activity |
lj = late start time of activity |
T = late project completion time
Nmg = requirement for resourceq by activity j executed in modem
Ry = availability of resource g intimet
O, = setof predecessors of activity]

To solve the MRCPSP, Talbot (1982) presents a twostage solution methodology which builds
upon ideas presented earlier for the RCPSP (see Talbot and Patterson, 1978). Inthefirst stage, the
network is relabeled using a heuristic scheduling rule. This labeling process defines the order in
which activities are considered for scheduling during the second stage of the procedure. The
precedence and resource constraints are also stored in memory as compact arrays that are
interrogated during enumeration to ensure solution feasibility. Stage 2 is an implicit enumeration
algorithm which builds always-feasible partial schedules into complete schedules by considering
jobs for assignment in increasing numerical order. When a complete schedule is built, if the
schedule is an improved solution, bounds are tightened and the assignment procedure begins again
with job 1. Ultimately, optimality is verified either by enumerating (explicitly or implicitly) all
possible schedules or by achieving some theoretical bound such asthe critical path. Talbot
demonstrates the procedure on problems of up to 30 activities. Not all problems were solved in the
16-second timelimit permitted (Talbot, 1982: 1209).

Patterson et al. (1989, 1990) refined Talbot’s solution approach by introducing aprecedence
tree which alows a systematic enumeration of mode assignments and start times. At each level of
the tree, the activities which are éligible for scheduling (vis-a-vis the precedence and resource
constraints) are considered for addition to the partial schedule. In the case of minimizing the
project makespan, activities are scheduled at their earliest precedence and resource fesible time.

Patterson et al. also discuss the application of the precedence tree to the ResourceConstrained Net

2-15

Present Value Problem (RCNPVP) which is the RCPSP where the minimization of cash flowsis
the objective (see Icmeli and Erenguc, 1996; and Darsch and Patterson, 1977). Negative activity
cash flows in the objective function of the RCNPVP would drive the start time of those activitiesto
their late start time. Because of the increased computational times required to enumerate over al
possible start times of these activities, Pattersonet al. suggest use of their algorithm as a heuristic,
where they alocate some fixed percent of the solution time taight-shifting the activities with
negative cash flows.

Sprecher (1994) improves the procedureby Patterson et al. for the RCPSP by introducing the
notion of ani-partial schedule which uniquely describes anodei of the enumeration tree and the
associated partial schedule. Sprecher also applies four dominance criteria and one feasibility
bounding rule. Sprecher performed a computational evaluation of his procedure on a set of test
problems and found that his procedure revealed an acceleration factor of approximately one
hundred in comparison to the original algorithm of Pattersonet al. (1990).

Kolisch and Frase (1996) produce an additional acceleration of the procedure by Sprecher
(1994) by adding three bounding rules (to shorten the time windows of feasible activity start
times), two lower bounding rules, and one feasihility rule. They comparethe modified procedure
with the basic enumeration scheme using 250 benchmark problems and find improvement on the
order of 1000 times. Sprecher and Drex| (1996a, 1996b) provide further refinementsto the
procedure. They present a branch-and-bound algorithm with special bounding rules which has
substantially improved the computational tractability of the MRCPSP and which has nearly
doubled the size of projects that can be solved to optimality (Sprecher and Drexl, 1996b: 24).
Even s0, in atest of 10 randamly generated problems, one problem with 16 activities, 5 modes per
activity, and 4 resource types required 3 hours 56 minutes to solve. Of greater concern, Sprecher
and Drex| report that the computation time seems to increase exponentially with the numbe of
activities and the number of modes per activity (Sprecher and DrexI, 1996b: 18).

Finally, Sprecher and Drex| (1998) improve the precedence tree approach further by
introducing search tree reduction schemes which exclude partial schedules from further
continuation. Search tree reduction is provided by a number of bounding rules, which, they report,
nearly doubles the tractahility of the problem (i.e., the size of problems that can be solved)
(Sprecher and Drex|, 1998: 448).

2-16

Sprecher et al. (1997) present another approach which builds upon the delay alternative
concept of Christofideset al. (1987) and Demeulemeester and Herroelen (1992) for the single
mode case. Using the notion ofmode alter natives, each level of the branch-and-bound treeis
associated with afixed time (decision point) at which activities can be started. Decision points
occur when all activities currently in process finish. The set of eligible activities is based on the set
of activities that are finished at or before the decision point. All ligible activities are temporarily
scheduled at the decision point. An eligible activity (now scheduled to start at the decision point)
was either previoudy assigned a mode or has not been assigned amode. The €eligible activities not
previoudy assigned a mode are assigned a mode and that set of activities, with their newly assigned
modes, form amode alternative. Scheduling all eligible activities to start at the decision point may
have caused some resource conflicts. Thus, the set of minmal delay alternatives is computed,
where adelay alternative is a subset of the activities started at the decision point whose
postponement makes the remaining scheduled activities renewableresource feasible. A minimal
delay alternative is one where noproper subset of the delay alternative is itself a delay alternative.
A minimal delay alternative is selected and those activities making up the alternative are removed
from the partial schedule at the decision point. A new decision point is calculated &d the process
continues until a complete schedule is found. The agorithm, then, backtracks to previoudly untried
delay alternatives and, if there are no more delay alternatives, to untried mode aternatives.

Hartmann and Drex| (1998) present an approach based on the approach used by Stinsonet al.
(1978) for the singlemode case and almost identical to the mode and delay alternative approach of
Sprecher et al. (1997). The difference between the single and multi-mode approaches liesin the
way partial schedules are expanded. Themode and extension alter native approach defines
decision points and mode alternatives in the same way that the mode and delay aternative
approach does. However, rather than attempting to start all eligible activities at a desgn point and
then delaying some subset of these activities to achieve resource feasibility, the mode and extension
alternative approach identifies subsets of resource feasible activities and begins one of these
subsets at the decision point. Backtrackingtests all untried extension alternatives before testing

untried mode alternatives.

Resource-Constrained Project Scheduling Problemwith Multiple Crashable Modes.
Ahn and Erenguc (1998) combine the MRCPSP and the Time/Cost Tradeoff Problem to form a
new problem, the Resource Constrained Project Scheduling Problem with Multiple Crashable

2-17

Modes (RCPSPMCM). Inthe RCPSPMCM, the duration of each activity is not only a function of
resource requirements (mode selection) but also of the amount of crashing (duratbn reduction by
increasing direct costs). For example, mode selection for an activity might be a matter of choosing
a skilled worker (charging a fixed hourly rate) or an unskilled worker (charging a different hourly
rate). The skilled worker would likelyrequire less time to accomplish the activity. Duration
crashing, on the other hand, might be accomplished by paying either worker overtime, thereby
shortening the duration of the activity (whichever mode was selected) without changing the mode.
Because of the combinatorial nature of the problem and the success of heuristics, Ahn and Erenguc

propose a heuristic approach for this problem.

Mode-Identity, Resource-Constrained Project Scheduling Problem. Salewski et al.
(19968, 1996h, 1997) introduce the RCPSP with Mode Identity (MIRCPSP). In many situations,
such as audit-staff scheduling, time-tabling, and course scheduling, the resources correspond to
individuals. This leadsto an assignment-type of problem where each activity must be performed
by one or more of severa individuals. Mode identity refers to the generalization of the RCPSP
where the set of all activities must be subdivided into subsets where al activities forming a subset
must be performed in the same mode. The RCPSP, then, might be viewed as a mode identity

problem where each activity is its own subset.

Expediting Resources The concept of expediting resources was introduced by Deckro and
Hebert (1989) in their Resource Ciritical Project Crashing Problem (RCPCP) (Problem 6 in Figure
2-1). The RCPCP isidentical to the RCPSP except that it allows a project to becrashed by

increasing critical resources in one or more periods. The objective is to determine the start time of
the activities and the critical resources to increase in order tomeet the project due date at minimal
cost for additional resources. The problem can be extended to allow for penalty and bonus

payments based on atarget due date.

Deckro and Hebert base their model (shown below) on the PWW formulation of the
RCPSP. The constraints limiting resources, RCPSP Constraints (8), are modified to

incorporate a new integer variable, h, , representing the units of expediting resourcesq used in

time periodt. The new resource constraints are Constraints (19). New constraints are added

to limit the availability of expediting resources, Constraints (20). The objective function

2-18

minimizes the cost of the expediting resources, ¢, . Objective (18) also includes abonus, by ,

for early completion of the project (by timeG) and a penalty, p,, for late completion of the

project (after timeG).

T G T
Minimize 2 ch, 2?2 bixy 2 ? pXy (18)
t?1 t?1 t?G?1
!
subject to ?x.?1, ?] (11)
t?e
I Ij
2t ??tx, ?2d, ?i?0;,] (12)
t?g t?e
J
2 X ?h, ?R,, ?q,t (29)
j?1
hey ?Hg, 2?0t (20)
x, 20,17, ?j.t 9)
Hy ?0andinteger, ?j,t (21)
where
X;, = 1if activity j completes at timet ; O, otherwise
h, = unitsof resourceq used at timet
J = termina node or activity
d, = duration of activity |
g = early start time of activity |
l; = latestart time of activity |
bj = bonusfor early completion of project (at timet)

Cq = cost of aunit of resourceq

p; = penalty for late completion of project (at timet)
G = dedred project completion time

T = late project completion ime

riq = requirement for resourceq by activity j

Ry = availability of resource g intimet

2-19

Hq = expediting availability of resource g intime t

O, = set of predecessors of activityj

Deckro and Hebert provide an example of the RCPCP solved using a commercial integer
program solver.

Kolisch and Frase (1996) extend the concept of expediting resources to include not only
renewable resources, but also nonrenewable resources. The problem they introduce, the Multi
Modal, Resource-Constrained Project Scheduling Problem with Expediting Resources
(MRCPSP-EXP), also considers multiple activity execution modes (Problem 11 in Figure 21).
They solve the problem using a modification to the implicit enumeration scheme by Sprecher
(1994).

Generalized Precedence Generalized precedence constraints extend the types of temporal

relationships between activities beyond the standard finish-start precedence. Generalized
precedence can be used to model finishistart, finish-finish, start-start, and start-finish precedence
types. De Reyck and Herroelen (1998a, 1999) show that all four types of precedence can, in fact,
be represented by the start-start precedence type with minimal time lags. The resulting problem is
the Generalized Resource Constrained Project Scheduling Problem (GRCPSP) (Problem 3 in
Figure 2-1). When the GRCPSP is extended for multiple activity execution modes, the resulting
problem is the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem
(GMRCPSP) (Problem 7 in Figure 2-1). The GMRCPSP has been addressed specifically by
Demeulemeester and Herroelen (1997). If maximal time lags are then included in the precedence
relationships, the resulting problem is the Multi-Modal, Resource-Constrained Project Scheduling
Problem with Generalized Precedence (MRCPSRGPR) (Problem 9 in Figure 2-1). This problem
has been addresses by Herroelenet al. (1998) and De Reyck and Herroelen (1998a, 1998b, 1999).
In their survey of project scheduling, Kolisch and Padman (1998) pointout that with the presence
of minimal and maximal time lags, a problem becomes much more complicated and standard
RCPSP algorithms generally fail to obtain solutions (Kolisch and Padman, 1998: 16). Solution
procedures that have been used are typically extensions of other procedures already discussed. For
example, De Reyck and Herroelen (1998a) extend a procedure used for the Discrete Time/Cost
Problem, and De Reyck and Herroelen (1999) use the concept of delay aternatives.

2-20

M ulti-Project Scheduling

Pritsker et al. (1969) are perhaps the first to explicitly address problems with multiple
projects. They mention the applicability of their model to multiple projects and formulate an
example with multiple projects, but they do not suggest any multiproject solution methodologies
other than lumping the projects together as one larger project. Since then, the following multi
project problems have been addressed with solution methodologies designed to take advantage of

the multi-project nature of the problem.

Multi-Project Scheduling Problem The Multi-Project Program Scheduling Problem (MPSP)
is presented by Wiley (1996) and Wiley et al. (1998). The objective of the problemisto minimize

the cost or duration of a multiproject program by crashing some of its ctivities. Unlike the
Activity Duration Crashing Problem, however, activity crashing is tied to specific limited
resources. That is, for every time period an activity is crashed, an amount of each resource is

consumed. Since these resources are limited,the amount of crashing possible is limited.

Wiley' s formulation is broadly based on the formulation by Deckro et al. (1992) for
scheduling work packages. Deckroet al. solve the work package problem using a standard linear
programming code. They also rote the decomposability of the problem using algorithms such as
Benders partitioning or DantzigWolfe decomposition. Berczi (1986) also models the scheduling
of work packages but uses goal programming to allow for multiple objectives.

Since Wiley's multi-project model displays the familiar block-angular structure and since
variables are assumed to be continuous, Wiley decomposes the problem using the DantzigWolfe
decomposition approach. Dantzig and Wolfe (1960) developed their decomposition principled
exploit the block-angular structure of many large linear programs by decomposing the problem
based on resources. The decomposition is characterized by a subproblem for each distinct block
and one master problem. During the algorithm, the subproblems ae iteratively solved, and during
each iteration, a solution proposal is passed to the master problem. The master problem records
and keeps track of all of these proposals. The master problem, then, seeks to identify a convex
combination of all the propasals submitted by Subproblem 1, and a convex combination of all the
proposals submitted by Subproblem 2, and so on, which, collectively, satisfy the coupling
constraints and which is optimal to the original problem.

Advantages to the decomposition approat are various. By decomposing a large problem, it is

often possible to solve linear programs of a size which would otherwise be unsolvable. The ahility

2-21

to solve large problems becomes even more attractive when the subproblems, themselves, have a
structure which can be exploited. Furthermore, the subproblems are independent and can be solved
on separate processors, leading to parallelization.

Another advantage to the decomposition approach isits economic interpretation (see Baumol
and Fabian, 1964; Lasdon, 1970: 160-163; Deckro et al., 1998). The decomposition can be
viewed as a decentralized decision process. In the context of afirm, the master problem represents
the problem of the corporation which seeks to optimize the overall good of the firm. The
subproblems can be viewed as subdivisions of the firm whose focus is on their respective
subdivision and not on the firm as awhole. Each subdivision has a set of unique constraints to
which it must adhere. Thereisalso a set of constraints which couple the subdivisions. These may
be constraints on resources for which all subdivisions compete. The solution process begins with
each subdivision submitting a proposal to the firm based on a unit profit figure provided by the
firm. Unfortunately, a proposal which is good for one subdivision may not be good for another
subdivision or, more importantly, to the overall corporation. The firm receives these proposals
from the subdivisions and determines the impact each proposal has on the corporation and,
ultimately, the other subdivisions. The firm, then, revisesits unit profit figures and hands those
down to the subdivision. The subdivisions submit new proposals based on the revised figures. The
process continues iteratively until an optimal set of decisions can be found. While the economic
interpretation of the decomposition method is frequently viewed in terms of the firm, it can likewise
be extended to any organization or process which can be decentralized. Clearly, balancing
resources amongst the unis of ajoint command would be a similar process, with the overall
commander acting as thecorporation and the various units acting as subdivisions.

The master problem and subproblems of the decomposed MPSP can be easily solved using
commercial linear program solvers. An example is provided by Wiley (1996) and Wiley et al.
(1998) with 3 projects, atota of 39 activities, and 3 resource types (including a budget). Because

of the continuity of the variables, insightful sensitivity analysisis also made available.

Resource-Constrained, Multi-Project Scheduling Problem The Resource-Constrained, Multi-
Project Scheduling Problem (RCMPSP) (Problem 5 in Figure 2-1), is presented by Deckroet al.
(1991). The RCMPSP isidentical to the RCPSP except that it considers multiple projects. While

these multiple projects can be modeled as a singlesuper -project and solved by the approaches

2-22

described for single-project problems, Deckroet al. (1991) propose a promising approach used to

decompose the problem.

Solution of the problem is aided by recognition of the blockangular structure of the problem
where the individual projects make up the blocks. This structure has been exploited by Sweeney
and Murphy (1979) for the solution of large decomposable integer programs, ircluding the multi-
item scheduling problem (Sweeney and Murphy, 1981). Sweeney and Murphy (1979) develop
their decomposition principle which is very smilar to Dantzig-Wolfe decomposition in that it
exploits the block-angular structure of large problems to decompose them into a set of smaller,
easier-to-solve problems. The main difference is that the SweeneyMurphy decomposition
algorithm is designed for integer problems, while DantzigWolfe has focused primarily on
continuous, linear programs. The subprablems are solved to calculate a set of best solutions for
each subproblem. These sets of best solutions are fed to the master problem which attempts to
identify one solution from each subproblem which is both feasible and optimal to the original
problem. If acombination of solutions cannot be identified, additional solutions are generated by
the subproblems and fed to the master problem. This process continues iteratively until an optimal
solution is found.

The Sweeney-Murphy decomposition approach hasbeen applied by Deckro et al. (1991) to the
RCMPSP. The master problem includes the resource constraints imposed on the overall program.
The subproblems include project-specific constraints. They provide an illustrative example with
eight projects. Theoriginal problem, before decomposition, would have 880 01 variables and 374
constraints— a prohibitively time consuming problem (Deckroet al., 1991: 114). After
decomposition, the largest subproblem had only 160 variables and the largest master problemhad
only 110 variables. Deckro et al. (1991) also point out that the subproblems include project
specific constraints which can be further subdivided into two sets: job completion constraints and
activity precedence constraints (Deckro et al., 1991: 114) The nature of both of these sets of

subproblem constraints lend themselves to further exploitation.

Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem The Multi-Modal,
Resource-Constrained, Multi-Project Scheduling Problem (MRCMPSP) (Problem 8 in Figure 2-1),

is afurther generalization of the RCPSP. It allows for multiple activity modes as well as multiple

projects. Vercellis (1994) presents this problem with an objective function to maximize the Net

2-23

Present Value (NPV) of a multi-project program by determining the mode under which to perform
each activity.

Vercellis solves this problem using a decomposition approach based on Lagrangian relaxation.
Lagrangian relaxation is a method for simplifying, or relaxing, the constraint set o a problem.
Suppose that the constraint set consists of a set ofcomplicating constraints and a set of more
tractable constraints, in the sense that, in the absence of the complicating constraints, the problem
would be solved relatively easily. It is possible to relax the problem by incorporating the
complicating constraints into the objective function using appropriatemultipliers. If the
multipliers are fixed, the relaxed problem can then be solved for the original problem variables.
The solution approach then hinges on finding appropriate values for the multipliers.

Geoffrion (1974) applies the relaxation approach to integer programming problems where it
can be used to fathom solutions in branch-and-bound procedures and to derive cutting planes.
Chalmet and Gelders (1976) use the approach for solving a warehousing model formulated in 61
variables. Fisher (1981) discusses a number of important issues revolving around the use of
relaxation for integer programming problems including the selection of nultipliers, the choice of
competing relaxations, and the incorporation of the lower and upper bounding capabilities of the
Lagrangian problem into branch-and-bounding procedures.

Vercellis (1994) uses Lagrangian relaxation where he takes project precedenceconstraints and
resource-partitioning constraints (these are the only two sets of constraintsthat tie projects to each
other) and moves them to the objective function with Lagrangian multipliers. The approach then
decomposes this Lagrangian relaxation into subproblems, one for each project, which are easier to
solve than the original integer program. The subproblems are solved using the branchand-bound
algorithm presented in Speranza and Vercellis (1993). The approach was tested on a number of
problems with up to 10 projects, up to 20 activities per project, 2 or 3 modes per activity, and as
many as 6 renewable resources. Problem solution times were all on the order of minutes (Vercellis,
1994: 274).

Generalized, Multi-Modal, Resource-Constrained Multi-Project Scheduling Problem Van
Hove (1998) presents the Generalized, MulttModal, Resource-Constrained Multi-Project
Scheduling Problem (GMRCMPSP) (Problem 10 in Figure 2-1). Thisis a RCPSP with multiple

modes, start-start precedence relationships with minimal lags, and multiple projects. Van Hove

decomposes the problem using SweeneyM urphy decomposition and then solves the subproblems

2-24

using a modification of the enumeration scheme by Sprecher (1994). Van Hove solves a problem
with 4 projects, 25 adivities per project, 2 or 4 modes per activity, and 4 resources per project.

The projects are coupled together by a constraint on the use of nonrenewable resources.

Summary

A wide variety of problem types and solution methodologies provide a foundation pon which
to formulate and solve the MRCMPSP-GPR/EXP (Problem 12 in Figure 2-1). A formulation of
the MRCM PSP-GPR/EXP, based on the PWW problem, is presented in the next chapter.
Subsequent chapters present greater detail on the applicability of the abowe approachesto the
MRCMPSP-GPR/EXP.

2-25

I11. Methodology

Introduction

This chapter presents a mathematical formulation of the Multi-Modal, Resource-Constrained,
Multi-Project Scheduling Problem with Generalized Precedence and Expediting Resources
(MRCMPSP-GPR/EXP). It also discusses the complexity of the MRCMPSP-GPR/EXP and
describes an approach for decomposing the problem. The decomposition of the problem serves as
the foundation for the solution approach developed in this dissertation. While the specific
methodology for solving the decomposd problem is detailed in subsequent chapters, this

methodology is outlined in this chapter to provide an overview of the research that follows.

M athematical Formulation

The MRCMPSP-GPR/EXP consists of a multi-project program where precedence
relationships (both standard finish-start and generalized) may exist between activities within a
single project or between activities of different projects. Figure 31 shows the activity-on-node
network representation of an example problem with three projects. Withirthe network, nodes
represent activities while precedence relationships are represented by the directed arcs between the
nodes. Single-headed arcs denote standard precedence while doubleheaded arcs denote generalized
precedence. Only one generalized preedence is shown in the example problem— between activities
B6 and C4.

Each activity has one or more alternative execution modes which determine the duration and
resource requirements of the activity. By selecting alternative execution modes for an actiity, it
may be possible to either crash or extend the duration of the activity. In practice, crashing an
activity generally comes at the cost of greater resource utilization while extending an activity may
release resources for use elsewhere.

Resources may be renewable, nonrenewable, or doubly constrained. Renewable resources are
those which are reusable from period to period (such as manpower, machinery, and space) but are
limited on a per-period basis. Nonrenewable resources are those which are expende once used
(such as fuel and construction materials) and are limited at the project or program level. Doubly
constrained resources are those whose availability is limited at the project or program level, as well

ason aper-period basis. Budget is a goad example of a resource which may be doubly

31

constrained. While the total program budget may be $1 million dollars, spending may be capped at
$10,000 per period.

Program“ ABC”

Project A

Project B

Project C

Figure 3-1. Activity-on-Node Representation of Example Problem 1

The development of a feasible programschedule is constrained by limitations on resources, as
well as the program planning horizon. Because of the tradeoff between the duration and resource
utilization of each activity, prudent selection of activity execution modes becomes crucial. In
practice, it is generally necessary to crash some activities and extend others. For example,
consider the threeactivity project depicted in Figure 3-2 with activity datain Table 3-1. (Note that
activity T is adummy activity with zero duration and resourceutilization.) If the shortest-duration
modes are selected for each activity, then Activity 1 will require four units of some renewable

resource and Activity 2 will require five units of the same resource. |If sufficient resources were

32

available over the entire project planning horizon (.e., at least nine units per period), Activities 1
and 2 could start simultaneously and project completion would occur at the end of Period 4. If,
however, only eight units of resource are available in each time period, tken the activities would
have to be performed in series and project completion would occur at the end of Period 7. Though
the shortest-duration mode was selected for each activity, there is no guarantee that this selection
yields the earliest project completion time. Furthermore, this selection of modes need not even
yield afeasible schedule. If, for instance, the project must be completed no later than Time Period

6, this schedule is not feasible.

©)

Figure 3-2. Example Problem 2

Table 3-1. Example Problem 2

Resource
Activity | Mode | Duration Utilization
1 1 3 4
2 5 2
2 1 4 5
2 7 2
T 1 0 0

In Example Problem 2, it is also possible to select the longestduration modes for each activity.
The activities can be started simultaneously since their combined resource utilizetion of five units
does not exceed the perperiod availability of eight units. The earliest project completion time,
though, is still at the end of Period 7 (.e., the maximum duration of the two activities). Again, this
selection of modes is infeasible for a planning horizon of six time periods.

The only feasible schedule for the project exists when the longestduration mode is selected for
Activity 1 and the shortest-duration mode is selected for Activity 2. The activities can be started
simultaneoudly since they require atotal of only seven units of resource and the project can be

completed by the end of Period 5 which is within the project’ s planning horizon of six periods.

33

While the crashing and extending of activities (through mode selection) is via in the program
scheduling process, additional scheduling options may be made possible through the availability of
additional resources. These additional, or expediting, resources may be obtained at some fixed
price, subject to availability. For example, during a military airlift operation the availability of
transport aircraft is limited on a per-period basis. 1t iswell established that the careful assignment
of specific types of transport aircraft to specific routes is essential to a successful opeation (this
assignment of aircraft to routes constitutes mode selection). It may be possible, however, to
purchase, reassign, or lease additional aircraft to supplement the aircraft which areregularly
available. Thisis, after all, the basis for the Ci vilian Reserve Aircraft Fleet (CRAF) program.

Just asthe availahility of regular aircraft islimited so is the availability of the expediting aircraft.
Furthermore, though the acquisition costs of the regular aircraft may be viewed as a sunk cost (at
least in regards to the specific operation), the acquisition cost for the expediting aircraft are
explicitly considered since they are incurred specifically for the given operation.

Expediting resources are so named because they give greater flexibility to he selection of
activity modes and start times. Consequently, the set of feasible schedules becomes larger and it
may be possible to find a feasible schedule with an earlier completion time. 1n Example Problem
2, if at least one unit of expediting resource is available in each time period, then selecting the
shortest-duration mode for each activity will lead to a feasible schedule which can be completed by
the end of Period 4 (.e., project completion has been expedited). The only question that remains$
whether or not the benefit of finishing the project one time period earlier than otherwise possible
outweighs the cost of the additional resource. The answer to this question depends, of course, on
the cost of the expediting resource and the benefit ganed by expediting project completion.

The scheduling objective may take a variety of forms. For example, the project’s duration may
be minimized subject to a budget restriction on expediting resources. The cost of expediting
resources may, on the other rand, be minimized subject to completing the project by afixeddue
date. Even more genera objectives may include bonuses and penalties for early or late completion
of the project relative to the due date or they may include costs based on the activity mdes
selected. Regardless of the program objective considered, any solution to the MRCM PSP
GPR/EXP will include the start time and execution mode of each activity, as well as the types and

number of expediting resourcesto acquire.

34

An important note to corsider is that, while more scheduling options {.e., activity execution

modes and expediting resources) provide a larger set of feasible schedules from which to choose

and give a planner greater flexibility, the problem also becomes larger and it becomes mae

difficult to find an optimal schedule.

Assumptions. The mathematical formulation of the MRCM PSP-GPR/EXP begins with the

following assumptions:

1

A program consists of afixed set of interrelated projects. The interrelationships between
activities in one project and activities in another project are fixed and known.

A project consists of afixed set of interrelated activities. The interrelationships between
activities within a project are fixed and known.

An activity is performed in one of multiple aternative execution modes. Each mode has a
fixed duration and per period requirement for renewable, nonrenewable, and doubly
constrained resources. The demand for a given resource remains constant from period to
period.

Activities are not allowed to be glit; once an activity begins, it will continue until
complete.

The program has a fixed and known planning horizon. The program may also have a due
date. Each individual project has an early start time no earlier than time period zero and a
fixed due date no later than the program due date.

Activity durations and resource utilizations, as well as resource availahilities, are integer
valued.

Notation This section presents the notation used in the mathematical formulation of the
MRCMPSP-GPR/EXP. The notation is explained further when introduced in the discussion that

follows.
General Sets:
P = the number of projects
l, = theset of activitiesin projectp
My = the set of execution modes for activityi of project p

35

Activity Interrelationship Sets:

Oo = theset of programlevel (inter-project) standard precedence relations
O, = theset of standard precedence relations within projectp
No = theset of programlevel (inter-project) generalized precedence relationships
N, = theset of generalized precedence relationships in projectp
Resource Sets:
QR = theset of all renewable resources
Qf = theset of programlevel renewable resources
fo = the set of renewable resources unique to poject p
Q" = the set of al nonrenewable resources
Q' = theset of programlevel nonrenewable resources
Q;,“ = the set of nonrenewable resources unique to projectp

Note that doubly-constrained resources are not explicitly considered but they belong to the set
of renewable resources and to the set of nonrenewable resources. Doublyconstrained resources

will be identified solely by their membership in the other two sets of resources.

Special Indices:
p(i) = activity i of projectp
T
Tp

the dummy terminal activity of the program

the dummy terminal activity of project p

Time-Related Parameters:

F = the early program completion time
G = theprogram completion due date
D = theprogramplanning horizon (F < G < D)

3-6

E, = theearly start time of projectp

Fo = theearly completion time of projectp

G, = thecompletion due date of projectp

D, = the planning horizon of projectp (F, < G, <Dy)
& = theearly start time of activity p(i)

li = thelate start time of activity p(i)

W = [&, Ip], the start time window of activityp(i)

dim = theduration of activity p(i) in modem

Resour ce-Related Parameters:

R

r = the units of renewable resourceq required by activity p(i) in modem

pimq
Rqu = the units of renewable resourceq available at time t
H qFﬁ = the units of expediting, renewable resourceq available at time t
rg‘mq = the units of nonrenewableresourceq required by activity p(i) in modem
RqN = units of nonrenewable resourceq available
H (;“ = the units of expediting, nonrenewable resourceq available

Cost Parameters:
Cimt = cost of beginning activity p(i), executed in modem, at timet

R

Cqy = costof an expediting unit of renewable resourceq at timet

c('f = cost of an expediting unit of nonrenewable resourceq

b, = benefit for completing the program at timet (early completion)
a = codt for completing the program at timet (late completion)

3-7

Binary Variables:

Xim = 1, if activity p(i) is executed in modem and starts at time't
= 0, otherwise
Xrp = 1, if terminal activity T, of project p starts at timet
= 0, otherwise
Xy, = 1if program terminal activity T starts at the beginning of periodt

0, otherwise

Expediting Resource Variables:

hgf = the units of expediting, renewable resourceq used at timet

N
hq

the units of expediting, nonrenewable resourceq obtained

Numbering of Activity Modes The execution modes of each activity in the program are

numbered in order of increasing duration. In mathematical terms,let My, be the set of execution
modes for activity p(i), letM=| M | bethe number of modes of activity p(i), and let dyn be the

duration of modem of activity p(i). Then for each activity, its execution modes will be numbered

suchthat d;, ?d;, ? ?2d;y.

Activity Start Time Windows One of the advantages of the Pritsker, Watters, Wolfe (1969)
model of the ResourceConstrained Project Scheduling Problem (RCPSP) over the Bowman (1959)

model isits variable definition. For any given activity i, Bowman defines a 0-1 variable for every
time period in which activity i could be in progress. Pritsker, Watters, and Wolfe, by contrast,
define a 0-1 variable for only those time periods in which activity i can finish. This alternate
variable definition serves to reduce the number of variables in the model. Because of its variable
reduction property, the Pritsker, Watters, Wolfe variable definition is used in this study, with one
modification — instead of reflecting activity finish times, the variables in the subject model reflect
activity start times. This modification has no technical impact on the formulation and is used

simply out of this author’ s preference.

3-8

FPogsible Activity Times

Time Periods

4i5iai7 8ol _ ,
Time Periods
1 45187 10
2
3
4 g
a
5 5
5
6 I
7 =
8 &
Q
10
@ (b)
Time Periods
1 :i2i3:4:5:aiT7T 10
1
g 2
[_|
&3
g
s 4
z 3
o 6
7
(0

[] = stivity 1, Duration 1

[1= activity 1, Duration2
[]= fctivity 2, Duration 2

Hote: InPart(e), Activity 2 is "randomly" placed.

Figure 3-3. Example Activity Start Time

39

With the modified Pritsker, Watters, Wolfe variable definition, each activity has a set of 0-1
variables which reflect the possible start times for the activity. It is possible to define a start time
variable for every period in the program planning horizon, but this typically resultsin more
variables than necessary. For example, assume a program has one activity with unit duration and
that the program planning horizon is ten time periods (see Figure 33). The single activity would
then have ten associated start time variables since it could start in any of the ten time periodsin the
program planning horizon (Figure 3-3a). On the other hand, if the duration of the activity were
two, then the activity will have only nine associated variables since it cannot possibly start in time
period ten and finish by the end of the planning horizon (Figure 33b).

Now consider the addition of a second activity of duration two (Figure 33c). If the original
activity must precede the second, then the number of variables associated with the originhactivity
reduces to seven. If the original activity begins in time eight or after, it cannot finish in time for the
second activity to be complete by the end of the program planning horizon. Following this
inductive reasoning, it is clear that the moreconstrained an activity becomes in terms of duration
and activity interrelationships, the fewer variables are required to reflect all of the possible start
times of the activity. Thisisthe power of the Pritsker, Watters, and Wolfe variable definition.

Since there is considerable benefit in reducing the number of variables as much as possible (to
improve computational efficiency), it is useful to determine the minimal interval of possible start
times for each activity. Thisminimal interval isreferred to as the activity’ sstart timewindow. To
determine the start time window for all of the activities in the program, the Generalized Ciritical
Path Method (GCPM) is used.

The GCPM is a generdlization of the Critical Path Method (CPM). While the CPM (see
Schtub, Bard, and Globerson, 1994: 339) finds the early and late start times of activities subject to
standard precedence relationships, the GCPM extends this approach to generalized precedence
relationships. The GCPM algorithm is as follows:

Generalized Critical Path Method (GCPM)

1. Settheearly start time of each activity equal to the release date of the project of whichit is
amember.

2. For each activity i, in numerical order, change its early start time to the greatest of the
following:

3-10

a. itscurrent early start time,

b. the early start time plus duration of each of its standard predecessors,

c. theearly start time of activity j plus minimum time lag between activity j and activity
i, for each activity j which is a generalized predecessor of activityi.

3. If theearly start time of any activity changed at Step 2, repeat Step 2.

4. For each activity i, in numerical order, check each activity for which activityi isa
generalized predecessor. |If the early start time of any generalizedsuccessor of activity i is
greater than the early start time of activityi plus the maximum time lag, change the early
start time of activity i to the greatest of the early start time minus maximum time lag of
each generalized successor of activityi.

5. If the early start time of any activity changed at Step 4, repeat Step 2. If not, the early
start time of each activity has been found.

6. Set the late start time of each activity equal to the program horizon minus its duration.

7. For each activity i, in reverse numerical order, charge its late start time to the least of the
following:

a itscurrent late start time,

b. thelate start time of each of its standard successors minus the duration of activityi,

c. thelate start time of each activity generalized successor of activityi minusits
minimum time lag from activity i.

8. If thelate start time of any activity changed at Step 7, repeat Step 7.

9. For each activity i, in reverse numerical order, check each activity which is a generalized
predecessor of activityi. If thelate start time of activity i is greater than the late start time
of any generalized predecessor plusits maximum lag time, change the late start time of
activity i to the least of the late start times plus maximum time lag of each generalized
predecessor of activityi.

10. If the late start time of any activity changed at Step 9, repeat Step 7. If not, the late start
time of each activity has been found.

With the GCPM defined, activity start time windows are determined using the following four
step procedure:

Determining Sart Time Windows

Step 1. Relax the problem to an unconstrained network problem, eliminating all of the
resource considerations of the original problems. Consider only the activity
precedence relationships and project early start times, E,.

311

Step 2. Using Mode 1 of each activity (i.e., the modes of shortest duration), use the GCPM to
determine the early start time, g,;, of each activity (this includes the early completion
time, F, of the program).

Step 3. Using Mode 1 of each activity and letting the prayram planning horizon, D, be the
expected completion dates of the program and projects, use the GCPM again to
determine the late start time, | ;, of each activity.

Step 4. The start time window of activity p(i) is the closed interval [g,, I].

Note that the use of the shortestduration mode of each activity isimportant at Step 2. To see
why, assume all activities are set to Mode 1 except for activityp(i) (a non-terminal activity) which
is set to Modent*. (We assume that the terminal activity is a dummy activity of zero duration.)
Assume that the duration of Modem* is k units longer than that of Mode 1. When the GCPM is
used to determine the early start times of the activities, either activityp(i) is on a critical path or it
isnot. If it is, then thereis at least one activity, call it activity q(j) (g may equal p), which is on the
same critical path and which immediately follows activity p(i). If e, isthe early start time of
activity p(i), then the early start time of activity q(j) is e; = €y + v = €5 + iz + K. If activity
q(j) has no other predecessors which are critical, thene is at least one time period later than if
activity p(i) were executed in Mode 1 and, consequently.g; is not the earliest possible start time of
activity q(j). If activity q(j) has other predecessors which are also critical activities or if activity
p(i) is not on acritical path, then the above argument is not valid. However, since we do not know
apriori the relation of activitiesp(i) and q(j) to the critical paths, it is necessary to use Mode 1, the
shortest-duration mode, for each activity to prevent such problems.

The argument for using Mode 1 for every activity in Step 3 is similar to the argument for using
themin Step 2. If activity p(i) is scheduled so it finishes as late as possible, but it is executed in a
mode with a longer duration than that of Mode 1, the resultant start time will be earlier than if
activity p(i) were executed in Mode 1. Consequently, the calculated late start time of ativity p(i)

will betoo early.

Constraints. As constraints are developed below, they are consecutively numbered. The
number assigned to a constraint will remain unchanged throughout the discussion. The constraints

are:

3-12

Execution Mode and Activity Start Time

An activity can be executed in only one mode and is started only once. Define variablexXgin to

be unity if activity p(i) is executed in modem and starts at the beginning of time periodt; X
equals zero otherwise. The constraint

? ? Xym ?1, 2i21,,2p?P (1)

m? M ; 12w,

assures a unique execution mode and start time for each activity. Note thatl, is the set of activities
in project p, whereP is the set of projects in the program, My; is the set of modes for activity p(i),
and the time index t is summed over the start time windoww, of activity p(i).

Activity Precedence

Activity precedence may occur at the program level {.e., inter-project) or at the project level
(i.e, intra-project). Precedence constraints may indicate that one ativity precedes another
(standard precedence) or that the start times of two activities are related (generalized precedence).
Standard precedence is common to scheduling networks. Generalized precedence is less common
but isincluded for its applicabili ty to many problems of interest, including Joint Campaign
Planning (where the start times of two or more operations may need to be coordinated) and
program management (where concurrent engineering approaches are being used).

Recall that the duration of activity p(i) is dependent on its execution mode. Letd,i, be a
known parameter which denotes the duration of activityp(i) when executed in modem. In
addition, recall that variable X,y is unity for exactly one mode/start time combination. The
duration of activity p(i) is, then, represented by the term,

? din ? X -

m? M t?2wy,;

pi pi

For example, if activity p(i) is executed in modem* and begins at time t*, then Xgim+ = 1 and
the duration of activity p(i) IS dgim.
The start time of activity i is given by the term:

? 7 tXpimt '

M, 2w

Given the above expressions for the duration and start time of activityp(i), standard

precedence constraints can be defined. If activityp(i) directly precedes activity p(j), then the start

313

time of activity p(j) must be no earlier than the start time of activity p(i) plus the duration of
activity p(i). Thus,

? ?txpjrrt? ’) ?txpimt? ’) dpim?xpimt1 ?(I’J)?Opi’)pop

MM 5 12wy MM 5 t2wy M, 2wy,
or
? 224X ? 2 21,20, 2(i,))20,,2p? P @)
MM, 2w, MM, t2w,

where O; is the set of standard precedence relationsin projectp and (i, j) ? O, denotes that
activity p(i) precedes activity p(j).

At the program level, assume activity i of project p directly precedes activity j of project p .
The start time of activity p (j) must, then, be no earlier than the start time of activityp(i) plusthe
duration of activity p(i). Thus,

? ?txg’)jm? f) ?txpimt? f) dpim?xpirnt1 7(pl1r)1)700

MM 4 12wy M 12w M tow,

or
? 2 2du)Xm ? ? 2 Dy 20, ?(pi. 7)) ? Oy 3
m?M pi t?wpi nT?Mﬁ t?wl—)j

where Oy is the set of programtlevel standard precedence relations and ? (pi, pj) ? O, denotes that
activity p(i) precedes activity p (j).

Generalized precedence constraints at the project level are given by:

? Pt ? ? Pt 22" 2(i,j))? N,,?p? P

ij
MM ; t2w MM ; t2w,
e o
? P ? ? ? % 2?0, ?2(,))?N,,?p?P
MM ; t2w, MM t2wy;

or

314

? ?txpm??';i”? ? 2t 2?0, ?(,j)?N,,?p?P (4)

M ; t2wy M t2wy
e .
?? Pt P ? ? 2%, 20, 2(,i)?N,,?p?P (5)
M, t2wy MM t2w,

where N, isthe set of generalized precedence relationships in projectp, (i, j)? N, denotes that

activity p(i) is a generalized predecessor of activityp(j), and ?™" and 2% aretheminimal and

ij
maximal start time lags between activitiesi and j.

At the program level, generalized precedence constraints are given by:

? 2 0m 22072 2 P 20, 2(pi,P)? N ©)
mM g t?wy Mg t?wy

27 P 2?7 ? ? 2t 20, 2(pi,Pi)? N, 7)
M g t?wy; M t2wy

where N is the set of programtlevel generalized precedence relationships and ? (pi, pj) ? N,
denotes that activity p(i) is a generalized predecessor of activity p (j).

Program/Project Completion

The program has a fixed planning horizon by which the program must be completed and
individual projects may have individual planning horizons aswell. (If a project does not have a
distinct horizon, its horizon is assumed to be the same as the program’s.) Planning horizons must
be chosen such that the projects/ program can be feasibly completed within the planning horizons.
The convention used in the Program Attributes Generator with Epediting Resources (PAGER),
which isintroduced in the next chapter, isto calculate the planning horizon simply by adding the
duration of the longestduration mode of each activity. The program horizon represents the
minimum amount of time required to @mplete the program if regularly-available resources are
constrained to a point where only one activity can be scheduled at atime and in its longestduration
mode.

The planning horizons are used in determining activity start time windows. Though planning
horizons are considered when the start time windows are calculated, additional constraints are
required to enforce the planning horizons. Otherwise, it is possible for an activity to start within its

start time window and end beyond a project or progranplanning horizon. For instance, suppose

3-15

project p has dummy terminal activity T, and that T, has a single predecessor, activity p(i)*. Since
activity T, has zero duration, the late start time of activityp(i)* is calculated as the horizon of
project p less the duration of activity p(i)* executed in its shortest mode. If activityp(i)* begins
at itslate start time but, however, in amode of longer duration, its completion time will be beyond
the project planning horizon. It becomes necessary, then, tainclude completion time constraints.
To simplify the completion time constraints, dummy terminal activity, T, is added for the
program and dummy terminal activity, T,, is added for each projectp. Terminal activities have

zero duration. Then,

?21tx,?D (8)
2wy
?tht?Dp, ?p?P 9
t?vvlrp P
Resources

There are three types of resources. renewable resources, nonrenewable resources, and doubly
constrained resources. Doubly-constrained resources are handled by extending the &ts of
renewable and nonrenewable resources and are not modeled explicitly. Thus, if resourceg* isa
doubly-constrained resource, renewable resource constraints are added to represent the peperiod
restriction on resourceg* (one constraint for each time period) and a single nonrenewable resource

constraint is added to represent the overall restriction on resourcey*.

R

Activity p(i) has a per-period requirement of r ;... units of renewable resourceq if executed in

modem and there are Rqu units of renewable resourceq available in time period t. Expediting

units of renewable resourceq are available in time period t a a per unit cost of ch§ and up to the

N

limit of Hqu additional units. Activity p(i) also has arequirement of r ... units of nonrenewable

resourceq if executed in modem. There are RqN units of nonrenewable resourceq available for

the entire program or project. Expediting unts of nonrenewable resourceq are available at a per

unit cost of ¢ and up to thelimit of HJ' additional units.

Resources may be specific to a given project (projectlevel) or may be in demand by more than

one project (programtlevel). Let QR be the set of programlevel renewable resources and let fo

3-16

be the set of renewable resources unique to projectp. Similarly, let Q) be the set of program

level nonrenewable resources and let Qg be the set of nonrenewable resources unique to projectp.
If variable hgf is the number of expediting units of renewable resourceq used in time periodt

and variable h('f is the number of expediting units of nonrenewable resourceq used, then for

project-level renewable resources:

¢
R R R
? r) I’pimq r) Xpimt ? th ? hqt ’

i?71, MM 2t 2d i, 21

292 Q. t*?[E,,D,],p? P

or

-
? ? rhe ? %im 208 2R, 292 Qg t*?[E,,D,],p? P (10)
i?1, MM 2" 2d iy 21

and

hg ? Hg

@ ?20?Qpt?[E,,D,],p?P (11)

For program-level renewable resources in demand by more than one project:

¢
27?7 ? o ?%m g ?RE, 2097 Q7,t*?[0,D] (12)
p2PI?I, MM ; 2t 2d 2L

pim
and

hg ?Hg

@ 70?2 Qg,t?[0,D] (13)

For project-level nonrenewable resources:

? ? e ? X ?2h) 2RY, 29?2 Qy,p? P (14)
i?1,M?M; 2wy,

and
hy ?Hy', ?20?Q),p?P (15)
For program-level nonrenewable resources in demand by more than one project:

?2? ? Nhm ? Xm 20 2R 2070 (16)
p?Pi?Ipnf?Mpi t?Wpi

3-17

and

hy?Hy . 70?Qg (17)

Objective Function. A wide variety of objective functions may be used for the MRCM PSR

GPR/EXP. The objective may be stated generally as the minimization of program costs subject to
acompletion due date. The generalityof the objective function is dependent on what program
costs areincluded. Three objective functions are specifically addressed here, each successive
function being a generalization of the previous. The algorithm developed for the MRCM PSP
GPR/EXP solves for the most general of the objective functions and, consequently, for the more
specific.

1. Minimize Program Duration

One common objective isto minimize program duration. In this case, the objective function is:
D
Minimize z?? txg (18)
t?F
where F isthe earliest possible completion time of the program andD is the program due date.
This objective function could be accompanied by a budget constraint to restrict program cost,
such as the cost of expediting resources.

2. Minimize Program Expediting and Completion Costs

A more general objective isto minimize program costs, including the cost of expediting
resources and the penalty for late program completion. In this case, the objective function
becomes:

D D
Minimze z? ? ?cihi? ? cl'hM 2?2 ax, (19
?QR t?20 QW t?F

where ch§ and c('f are the costs for expediting resources anda; is the cost for completion of the

program at timet. Note that program completioncosts could be bonuses for early completion
(completion by some targe completion date or due date,G) and/or penalties for late completion
(viss&vis G). Since thisis a minimization function, a bonus (a negative cost) would be negative
valued. If both bonuses and penalties were considered, the final term in the objective function

D
? axq

t?F

3-18

would be divided between two terms, one for bonuses on the intervalff, G] and the other for
pendlties ontheinterval [G+1, D] asin
D G D
?axn? 28X ? ? a7,
t?F t?F t?2G?1
Objective Function (19) is a generalization of Objective Fundion (18), to minimize program
duration. If the costs of expediting resources are moved to the constraint set as part of a budget

constraint, or if these costs are considered negligible, then costschﬁ and c('f become zero. In

addition, if the completion costs, a;, are set tot, then Objective Function (19) is precisely the

objective of minimizing program duration.

3. Minimize Program Mode/Time, Expediting, and Completion Costs

A further generalization is to minimize program costs, including costs assessed for executing
an activity in a given mode and starting at a given time, the cost of expediting resources, and the
completion costs. In this case, the objective function becomes:

Minimize

D D G D

2222 2 P CunXum ? 2 P CGhE? P N2 a¥x 2 D Ak (20)

p?Pi?1, MM ; t20 q?QR t?0 g?2QN t?F t2G?1

where ¢,y iSthe cost for executing activity p(i) in modem and starting at timet.

If costs cime are set to zero, Objective Function (20) reduces to Objective Function (19).

Complete Model The complete formulation of the MRCMPSR-GPR/EXP, with Objective
Function (20), isgiven by:

Minimize

D D G D
2297 2 P Cuom ? P P CENE? P V2D @Bk, 2 D aP Wy, (20)

p? Pi? 1, MM 5 t20 g?QR t?20 ?Q t?F 12G?1
Subject To
? ? Xym ?1, 2i21,,2p?P (1)
m? M ; 12wy,

2 224X ? 2 2%, 20, 2(,))20,,2p? P @

MM t2w M ; 2wy

3-19

? ?2@?2d)Xm? ? P B 20,

pimt
mM g t?wy; MMy t?wy
? P2t 2?21?22 Pt 20,
MM g t2wy MM, t2wy
2P P 27?2 ? tXym 20,
MM, t2wy MM, t2wy,
? 2?2?02 ? ? Xy 20,
mM g t?wy Mg t?wg
? P G270 ? Pt 20,
M g t?wy; Mg t?wg
?tx, ?D
2wy
? %, ?D,,
t?vvlrp
¢
R R R
? r) I’pimq r) Xplmt ?hqt ? Rqﬂ
i?IprTf?Mpi t2t" 2d i ?1
R
hqt ? Hqt’
¢
R R
277 ? rplmq ? Xoim 2 Ng ? Ry
p’7P|’7I nf’M t?t "dp.m
R
hqt ? Hqt’
N9
? 7 p|mq 7 Xp|mt h Rq
i?1, MM 2wy

3-20

?(pi, Pi)? O

?@,))? N,,?p? P

?@,))? N,,?p? P

? (P, Pi)? No

? (P, Pi)? No

2p? P

292 Q. t*?[E,,D,],p? P
2q? Qy.t?[E,,D,],p? P
29? QF,t*2[0,D]
29? Qf,t?[0,D]

29?2 Q) ,p? P

29?2 Q,,p? P

(3)

(4)

)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

?? ? m? % 20 2RY, 202Q) (16)

R My o,
hy?Hy . 70?Qg (17)
Xoim 7 017, 2 p,i,mt (22)
hy ?0 andinteger, 2q.t (22)
hy' 0 andinteger, 2q (23)

Problem Size and Complexity

The mathematical formulation of the MRCMPSP-GPR/EXP is, as expected, large and
complicated. The number of variables and constraints for even arelatively small problem can be
daunting. Returning to the example illustrated in Figure 3-1, consider the activity datalisted in
Table 3-2. The example problem has 3 projects, atota of 19 activities (including the dummy
program terminal activity), and up to three modes per activity. In addition, there are two
renewable resources, two nonrenewable resources, and one doublyconstrained resource, al
considered to be programlevel resources. A program planning horizonof 30 time periods has been
assumed.

The number of binary variables, X, May be as many as

R
27?7 2127 21?71,
p?1i?l m?lt?e, p?lt?er, t?er
where the first term represents the nondummy activities, the second represents the project dummy

terminal activities, and the last term represents the program dummy terminal activity. This number

can be approximated as |[P|| 2 , M W , where I, isthe average number of activities per project

(including dummy terminal activities), M isthe average number of modes per activity, and W is
the average length of the activity start time windows. 1n the example problem, there are on the
order of 350 binary variables, assuming 10 to be the average length of the activity starttime
windows. (Clearly, thetightness of the start time windows will affect the problem size.)

R is

The number of renewable resource variables, hqt ,

[,

321

where ||QR|| is the total number of renewalde and doubly-constrained resources (projectlevel and

program-level) and D is the program planning horizon. In the example problem, there are 90

renewable resource variables.

Table 3-2. Activity Data for Example Problem

Act Mode
Al

o
=
0
N
Z
N
O
=

=
o

=
o

A2
A3

o

A4

O VWWOWOOWOoAN

A5
Bl
B2

=
o
NONNSNNOR P 0ALN

B3
B4
BS

=
o

B6

B7

C1

c2

OO NGOOON®WO 000

Cc4

=
o

N~

C5
C6

cwommNWARUNMOOWWWOUEBEEovnoEo~NoooowsZ
P
S}

FPWNRPRPWONRPRRPPRPONRPONRPNRONRPRERRNRRRPONRNEREERN
= = = = = = 9
cBowoBowuonvmEBEBorBrsvounBorEooonmwooson b anE
ONNDMOONOOWRORAORDOWOODNDOOROVMONWONMOOOW

OPRUOWBRDRUOUNWERRAOWANUNOADORRWWMNUONO®©

OCOO0OO0OWOUUNOONONOOOO®OWMONNOOU OO

o N o

The number of nonrenewable resource variables, h" | is
-

That is, one variable for each nonrenewable resource (project and program-level) and one variable
for each doubly-constrained resource (project and program-level). In the example problem, there
are three nonrenewable resource variables.

In all, the example problem has 443 variables. Table 3-3 summarizes these results.

3-22

Table 3-3. Number of Variables

Variable Number of Variablesin
Type Variables Example Problem
i L L
Xprt 237 3129 31251 320
p?1i?l m?l t?e, p’?lt’?eTp t?er
E o s
Y "] 3
Totd 443

Next, consider the number of constraints. Table 34 outlines the number of each type of

constraint, where QY is the average number of project-level renewable resources, Q' isthe
average number of project-level nonrenewable resources, C_)p and Np are the average number of

standard and generalized precedence relationships, respectively, per project, and ||Og|| and ||Ny||

are the number of programlevel standard and generalized precedence relationships, respectively.
There are atotal of 232 congtraints in the example problem.

Finally, consider the complexity of the MRCMPSR-GPR/EXP. This problemisa
generalization of the ResourceConstrained, Multi-Modal, Project Scheduling Problem
(RCMMPSP) which is known to be NRP-Hard (Kolisch, 1995: 26). In addition, Sprecher and Drexl
state that if a RCMMPSP has more than one activity, just finding a feasible solution is an NP-hard
problem (Sprecher and Drex|, 1996a: 3).

In an effort to mitigate the computational difficulty of the MRCMPSRGPR/EXP, this
dissertation develops a methodology for decorposing the original problem into smaller, more
tractable problems. One of the research issues addressed is the tradeoff between the time saved in
solving a number of smaller subproblems and the computation overhead associated with the
iterative process of the approach. Each of the smaller problemsis still NP-Hard, but it is precisely
this fact which makes decomposition an appealing approach. Since the time to solve NPHard
problems grows very quickly as the size of the problem grows, reducing the size & a problem
should significantly reduce the time to solveit. If the time saved solving each of the smaller
problems is greater than the computational overhead, then the decomposition approach should be
applied when possible. Chapter VI addresses this research issue and provides results of testing of

the decomposition approach.

323

Table 3-4. Number of Constraints

Congtraint Number of Constraints Congtraintsin
Type Example Problem
1) P, 19
@ ad (3 o, P72[ed 24
(4) to (7) 2N, AP 2 2N, | 2
(8) 1 1
(9) <|P 0
(109 [Py 2D, 0
(1D [Py D, 0
@] 0
(13) HQ(?H D 90
(14 1Pl 0
(19 1Pl 0
(9 2 :
47 2 :
Total 232

Decomposition of the M RCM PSRGPR/EXP

The first step in decomposing the MRCMPSP-GPR/EXP is partitioning the constraints
between those which apply to individua projects and thosaewhich apply to the entire program. The
program-level constraints are (3), (6), (7), (8), (12), (13), (16), and (17), while the projectievel
congraints are (1), (2), (4), (5), (9), (10), (11), (14), and (15). The problem with partitioned

constraints becomes:

Minimize

D
2227 2 ?c

P?Pi?1, NP M, t?0

D
RKR NN
pimtxpimt ? ’) ’) thhqt ? ’) Cq hq N
N

q?QR 120 a?Q

324

G D
? 8™ ? P A%, (20)

t?F t?G?1

Subject To

Program-Level Constraints

? ?(t?dpim)xpimt? ? ?tXT)jm?()’ ?(pi, pi)? O,
m?M pi t?wpi nT?Mﬁ t?wl—)j

2 D0, 7707 2 D20, 2 A)? N,

M 12w MM 12wy

? P ?%m 2?07 ? 7 Pt 20, ?2(pi,Pi)? N,

MM, 2wy, MM 12wy

?tx, ?D
2w

¢
27?7 ? i ?Xm?Ng?Ry, 20?2 Qg.t?[0,D]
p2PI?I, MM ; 2t 2d i 2L

pim

hg ?Hg

@ 70?2 Qg,t?[0,D]

N N N N
? r) r) rpimqr.)Xpimt?hq 7Rq ' ’?q?QO
p?Pi?1 MM ; 2wy

hy ?HS, ?0?Qp

()

(6)

(7)

(8)

(12)

(13)

(16)

(17)

325

Project-Level Constraints, p=1, 2, 3,..., P

? ? Xym ?1, 2i21,,2p?P (1)
m? M, t2w,
? ?20?din)Xim? ? ? Xy 20, ?(i,))?0,,?p? P (2
M ; t2w M ; t2w;
? P2t 2?0?22 ?t;n 20, 2(i,j))?N,,?2p?P (4)
M ; t2w MM 2w,
?2? P 2?77 ? ? ?tXn?0, ?(,))?N,,?p?P (5)
M, 2w M, t2w,
?tq,.?D, ?p?P (9)
t?vvlrp
R C R R R
? ? rhe ? Xm 2hG?2RY. 20?2 QNt*?[E,,D,],p? P (10)
i?1, MM 2" 2d iy 21
hg ?HG, 29? Q.t?[E,,D,],p? P (11)
? ? e ? X ?h 2RY, 20?2Q) , p?P (14)
i?1,MM,; 2wy,
hy ?Hy', ?20?Q),p?P (15)
Variable Bounds
Xoim 7 70717, ?p,i,mt (22)
hy ?0 andinteger, 2q.t (22)
hy' 0 andinteger, 2q (23)

3-26

With this partitioning of constraints, the block-angular structure generaly associated with
Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) becomes apparent. Figure 34 depicts
this block-angular structure, where matricesAp, p =1, 2, ..., P+1, consist of the programlevel
coefficients associated with projectp, matrices B, p =1, 2, ..., P+1, consist of the projectlevel
coefficients associated with projectp, variables x,, p = 1, 2, ..., P+1, are the activity start time and
expediting resource variables, and constantsc,, p =1, 2, ..., P+1, are the objective function
coefficients associated with variable x,. Note that X, is a mixed vector of variables where some of

itselements are { 0,1} and others are nonnegative integers.

Original Problem
P71
Problem (P): Minimize 2?7 ¢ X, (24)
p?l
Subject To
Ax, 2AX, 20 2AXo 2A i Xon 2D, (25)
B,X, ?2b, (26)
B,X, ?b,
Bo-Xp ?b,

BroXpa ?Dpoy

, 3%,1?for start timevariables

X, ? % _ N _ 1?2 p? P21 (27)
2? 0and integer for expediting resourcevariables

where

A represents the programlevel constraint coefficients associated withproject p,
B , represents the projectlevel constraint coefficients of projectp,

p, 1? p? P, areindices representing theP projects/ subproblems, and

P + 1 isthe index representing the program.

Figure 3-4. Block-Angular Structure

3-27

Dantzig-Wolfe decomposition has proven valuable for linear programs with continuous
variables. Dantzig-Wolfe decomposition, however, is inappropriate for integer programming
problems, such as the MRCMPSP-GPR/EXP, because the master problem develops a sdution by
finding an optimal affine combination of candidate solutions from the subproblems (extreme points
of the feasible region). In general, an affine combination of the candidate solutions from integer
subproblems is not guaranteed to be integervalued.

Sweeney and Murphy (1979), however, developed a decomposition approach for integer
programs with such a block-angular structure. With Sweeney-Murphy decomposition, the
individual projects can be separated into blocks, or subproblems. Each subproblemis solved to
find aset of k-best solutions (in terms of objective function value) for that subproblem. These sets
of best subproblem solutions are iteratively passed up to the master problem until the master
problem identifies one solution from each subproblem (rather than an affine combination) which,
collectively, are feasible to the original problem and provide the best overal solution to the origina

problem.

Solution M ethodologies

The solution methodologies presented in this dissertation are motivagd by the Sweeney-
Murphy decomposition approach. Methodologies are needed for solving both the decomposed
subproblems and the master problem. Additionally, a methodology for generating instances of the
MRCMPSP-GPR/EXP is required for testing the solutionmethodologies. This section presents an

overview of these methodologies.

Problem Generation During areview of the literature, it was determined that no existing

problem generator is capable of generating all of the characteristics of the MRCMPSRGPR/EXP.
Worse, most of the existing generators use the coefficient of network complexity (CNC) as their
measure of network complexity. The CNC, the ratio of arcs to nodes in the network, is easily
implemented in a problem generator, but has considerable shotcomings (detailed in Chapter V).
Thesen (1977) developed an aternate measure of network complexity, the Thesen Restrictiveness
(RT), which is recognized as a much better measure. Still, only two generators (Schwindt, 1995,
1996 and Drexl et al., 1997)) attempt to use the RT. Unfortunately, both generators actually use
the CNC to add arcsto a project network and then simply calculate the RT of the resulting

3-28

network. If the desired RT is met or exceeded, the generators stop. Unfortunately, the restilhg
RT may be well beyond what the user intended.

The research presented in Chapter 1V demonstrates a methodology for generating project
networks using the RT directly. Inthat way, researchers have control over the complexity of the
networks which underie their experiments. With an RT-based project network as its core, the
generator developed in Chapter IV adds the additional characteristics required by the MRCM PSP
GPR/EXP. Some of the methods presented by Kolischet al. (1992, 1995) are used directly or
extended as necessary. Other features are added, such as an approach for converting standard
precedence relationships (those produced by the network generator) into generalized precedence
relationships.

Single Project / Subproblem Solution The MRCMPSP-GPR/EXP can be solved directly as a

large, single-project problem or decomposed into a set of smaller, semiindependent subproblems
(themselves, single-project problems). Whichever approach is used, a methodology for solving
single-project instances of the MRCMPSP-GPR/EXP is required.

Chapter V develops an implicit enumeration algorithm for solving singleproject instances of
the MRCMPSP-GPR/EXP. The algorithm is based on a scheme by Talbot (1982) for the Multi-
Modal, Resource-Constrained Project Scheduling Problem (RCPSP). The scheme constructs
project schedules by adding one activity to the schedule at atime. First, a mode is selected for the
activity and, then, a start time. Feasibility tests are conducted at each step to fathom mode / start
time combinations which are infeasible. Bounding tests are also conducted to see if the growing
schedule is dominated by the best incumbent schedule. 1f the current mode / start time combination
is either infeasible or dominated, that branch of the search tree is fathomed and a new mode / start
time combination tried.

While Talbots' scheme provides a solid method for enumerating over the possible project
schedules, it is extended for generalized precedence and expediting resources. It is also expanded
to gererate a set of k-best solutions rather than a single optimal. Generation of a set of solutionsis
explicitly required by the decomposition approach. Even if problem decomposition is not the goal,
however, these alternate solutions offer a decisioamaker multiple options which can be evaluated

using non-objective function criteria (e.g., managerial preference for certain mode choices).

3-29

Generation of thek-best solutions is made possible by fathoming branches of the search tree
using the current k-th best solution rather than the current optimal solution. 1f a solution is at least

as good as thek-th best, the solution is added to the set and thek-th best solution is dropped.

Decomposition / Master Problem Solution During the solution methodology, each

subproblem is solved to find thek-best solutions for that subproblem. These sets of k-best
solutions are passed to a master problem (detailed in Chapter V1) which evaluates them, seeking to
find one candidate solution from each subproblem which, collectively, are both feasible and

optimal to the original problem. If these criteria are not met, additional solutions are generated by
the subproblems and passed to the master problem. This iterative process continues until afeasible

and optimal solution is found.

An algorithm for solving the master problem is developed in Chapter VI. The agorithmisan
implicit enumeration algorithm, similar to that used for solving the subproblems, except that a
subproblem solution is added at each level of the search treerather than a single activity. Again,
feasibility and bounding tests are conducted in an attempt to fathom unproductive branches of the
tree as early as possible.

Also detailed in Chapter VI is a methodology for producing multipliers which form part of he
subproblem objective functions. These multipliers are developed to encourage the subproblems to
comply with program-level constraints. Theoreticaly, a good choice of multipliers will reduce the

number of solutions required from the subproblems. Thisassertion is tested in Chapter V1.

Summary

This chapter presented a mathematical formulation of the MRCMPSP-GPR/EXP, discussed
the size and complexity of the MRCM PSP-GPR/EXP, and showed how the MRCMPSR
GPR/EXP might be decomposed. Additionally, three mehodologies were overviewed: (1) problem
generation; (2) single project / subproblems solution; and, (3) decomposition / master problem

solution. The next three chapters discuss in much greater detail these methodologies.

3-30

IV. Problem Generation

Overview

This dissertation addresses the Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting Resources (MRCMPSRGPR/EXP). This
problem and the solution methodologies presetted in later chapters are part of a growing wealth of
problem formulations and solution methodologies which comprise the field of resourceconstrained
project scheduling. Ferreiraet al. (1998) point out that the need to validate, scope, and score an
ever-increasing number of competing algorithms and heuristics for scheduling projects under
resource constraints implies the extensive use of simulation to test them against large and
significant network testing sets. In view of this need, three widely used ¢st sets have been
proposed over the years: those of Patterson (1984); of AlvarezValdez and Tamarit (1989); and of
Kolisch et al. (1995) and Kolisch and Sprecher (1996).

While standard test sets have proven their worth for many researchers, two conditionsnitigate
their value over time:

1. They are inadequate for new problem types with characteristics not represented in the test

Set.

2. Researchers have little or no control over the parameters used to develop the fixed test sets.
These parameters (such as the complexity of the network) can greatly influence the
difficulty of problem instances.

To expand on this point, consider Patterson’s (1984) test set of 110 problem instances to
compare four exact procedures for makespan minimization of the singlemode resaurce-constrained
project scheduling problem (RCPSP). Though thistest set served asthe benchmark for years,
Kolisch et al. (1992) suggest that these test problems were not generated using a controlled design
of specified parameters, consider only the sirgle-mode and makespan-minimization cases, and have
been shown to be among the easier instances of such problems, even among singlemode problems.
For these reasons, Kolisch et al. argue that these problems should no longer be considered
benchmark instances.

To overcome the shortcomings of standard test sets, the development of methods to generate
project networks is a key condition in the scientific assessment of so many different procedures on
so many different problem types. Unfortunately, the number of published generators available in
the literature for resourceconstrained project scheduling is limited (Ferreiraet al., 1998:58). A

4-1

review of the literature confirms this conclusion. Five recent publicly-accessible generators
(Demeulemeesteret al., 1993; Kolisch et al., 1992, 1995; Schwindt, 1995, 1996; Drexl et al.,
1997; Agrawal et al., 1996) are reviewed below for this study. Their key features are summarized
in Table 4-7 at the end of this chapter.

Demeulemeester et al. (1993) stress the random generation of project networks. They argue
that many project scheduling procedures work well for certain network structures and poorly for
others. To properly evaluate competing scheduling procedures, networks should be generated from
among all feasible networks and not be limited to networks of some particular structure. 1nthe
Demeulemeester et al. generator, referred to here asDDH, the number of nodes and arcsin the
network can be specified by the user or randomly drawn from a number of probability
distributions. Arcs are then added or deleted until the desired number of arcsis achieved. Activity
durations, the number of renewable resources (limited to three), resource requirements and
availabilities, and the events marking the project milestones ae also randomly drawn from
precoded distributions.

While the philosophy used in the development of the DDH generator is a valid general
approach to generator design, it ignores the issue that a key aspect of a class of algorithmic designs
may be the exploitation of problem structure. To evaluate an algorithm designed specifically for a
target class of problems, aresearcher requires away to control the structure of the test problems.
This sentiment is echoed by Kolisch et al. (1992, 1995) who have developed a problem generator
which allows the user to set several project parameters. Some of these parameters were proposed
in the literature, while others were developed by Kolischet al. Entitled ProGen, their project
generator includes single and multi-mode activities, different categories of resources, and single
and multi-project scheduling problems. ProGen has been used by a number of researchersin
recent studies, including De Reyck and Herroelen (1996), Icmeli and Erenguc (1996), Ahn and
Erenguc (1998), and Van Hove (1998). In some cases, however, these researchers have added
problem features of their own. Van Hove (1998), for instance, replaced the standard precedence
constraints generated by ProGen with generalized precedence congtraints.

Working with ProGen as a base, two additional problem generators have been developed.
Schwindt (1996) extended ProGen (calledProGen/max) to incorporate minimal and maximal time
lags, as well as some additional problem parameters, such as the estimator of netwak
restrictiveness suggested by Thesen (1977). Drexlet al. (1997) extended ProGen to ProGen”X in

4-2

order to incorporate new modeling extensions such as partially renewable resources, changeover
times, and mode and set of mode identity

One final problem generator, DAGEN, was developed by Agrawalet al. (1996) to employ the
network complexity index introduced by Beinet al. (1992). The complexity index measures how
far a given network isfrom a series-parallel network. (The definitionand significance of such a
network is described below in the subsection entitledNetwork Complexity.) Costs, duration, and
resource requirements associated with the activities are generated randomly from uniform
distributions.

While problem instances for a great number of problem classes can be generated using the
generators described above, none are capable of producing all of the characteristics of the
MRCMPSP-GPR/EXP. None of the generators are designed to generate (1) expediting resource
availabiliti es and costs, (2) mode costs which can be constant, increasing, or decreasing with time,
or (3) truly multi-project programs. While ProGen suggests the capability of generating multi
project problems, these problems have no precedence relationships betwea activities of one project
and those of another (other than supersource and supersink dummy nodes which tie them together).
Furthermore, the resources generated by ProGen are progrardevel resources only, with no
consideration for projectspecific resources.

This research develops a problem generator entitled PAGER Program Attributes Generator
with Expediting Resources). It was designed to incorporate all of the characteristics of the
MRCMPSP-GPR/EXP. As agenerdization of many other problem types, PAGER’s usefulnessis
not limited to this sole class of problem. Problem instances for the traditional PERT/CPM
problem, the net present value problem, the job shop scheduling problem, the single and multi-
modal, resource-constrained project scheduling prdolems, and others can be generated using
PAGER. The primary advantages of PAGER are fourfold:

1. It can generate not only singleproject problem instances, but truly multi-project problem
instances, with interrelationships between projects, programlevel (shared) resources, and
project-specific resources.

2. Parameters within a multi-project program can be set to independently structure each
project, as well as their interrelationships. This allows each project to have unique
characterigtics. In ProGen, for instance, the number of activities in each project is drawn
from the same distribution, whereas in PAGER, the user may specify a distinct distribution
for each project.

4-3

3. It allows certain parameters (fixed by the user in other generators) to be drawn from ser-
defined uniform distributions. For example, in ProGen, resource strength (a measure of
resource scarceness) is, by construction, the same for each resource. In realistic problems,
it is reasonable to expect some resources to be scarcer than others. PAGER alowsthe
value of resource strength to differ (randomly) for each resource.

4. Some researchers may prefer certain problem-defining measures to others. Thisis
particularly true of measures of network complexity (e.g., Thesen, 1977; Kolisch et al .,
1992, 1995; De Reyck and Herroelen, 1996). PAGER allows usersto select from among
two common measures of network complexity found in the literature, even alowing the
user to use measures of network complexity smultaneously. Generated problem instancs,
then, reflect the user’s preferences. This flexibility also allows researchersto use asingle
generator to produce problem sets to compare these competing measures.

The remaining sections of this chapter proceed as follows:

1. PAGER: Problem Generator develops the procedure for generating problems step by step.
2. PAGER Implementation outlines the implementation of the PAGER program.

3. Summary and Conclusions gives some final remarks.

PAGER: Problem Generator

The generation of problems using PAGER can be subdivided into six steps. First, PAGER
reads a problem specification file, which contains all of the problem parameters. For each desired
problem instance, basic problem data is then generated, a problem network is developed, resource
demands and availahilities are determined, and problem cost datais generated. Finally, the
problem is output into any of three formats. ProGen format (depending on problem features),
PAGER format, or MPS format. Sample input and output files are found in Appendices B and C,
respectively. The six steps of problem generation are discussed in the following subsections.
Figure 4-1 depicts the overall flow of the problem generation algorithm.

Step 1 - Specification File Input. The specification file (illustrated in Appendix B) isasimple

text file through which the user may specify problem design preferences. These preferences are the
parameters used to generate basic problem data, the problem’s network structure, the resource

data, and the cost data.

4-4

Read Specification File
(including number of
instances, Maxlnst)

I

inst=1

v

Generate Basic Data [€—

'

Generate Network
Generate Resource Data
l inst=inst+ 1
A

Generate Cost Data

.

Output Problem Instance

Figure 4-1. Overall Flow of PAGER

Once the specification file isread by PAGER, problem generation continues by sequentialy
performing Steps 2 through 6 for each problem instance desired. In the discussion which follows,
the notation used in ProGen is retained wherever possible. In addition, three commonly used
functions are defined as follows:

round(x) : roundsthe value of x to the nearest integer

int(x) : truncates the value of x to the greatest integer ? X

4-5

rnd[a, b] :auniformly-distributed pseudorandom number from the interval [a, b]

Pseudorandom numbers are constructed by transforming [0, 1] uniformly-distributed
pseudorandom numbers generated using Marsaglia’ s Multiply-with-Carry (MWC) generator
(Wheeler, 1994). Marsaglia' s MWC generator is easy to implement and produces pseudorandom
number streams with an extremely long period-- about 2'° (Wheeler, 1994). ProGen uses the
random number generator developed by Schrage (1979) which has a period of 2.

Step 2 - Basic Data Generation. Basic problem data includes the number of activitiesin each

project, the number of modes for each activity, the program and project release dates, the program
and project due date factors, and the duration of each activity mode. This data is randomly
generated based on theparameters specified by the user through the problem specification file.
Parameters used in generating basic data are summarized in Table 4-1.

Table4-1. Input Parameters for Basic Data

Parameter Definition Bounds
P number of projects (the program is treated asproject p = 0) [1, 10]
J ;“in /J ;W min/max number of activitiesin project p [1, 99]
M ;“in /M ;W min/max number of modes per activity in project p [1, 10]
d ;“in /d ;W min/max duration of activitiesin project p [0, 999]
2 ;“in /? ;W min/max release date of project p (including p = 0) [0, 999]
2 ;ﬂin /? SW min/max due date factor of project p (including p = 0) [0.0, 1.0]

The procedures used to generate basic problem data (summarized in Table 42) are materially
the same as those used in ProGen. The difference is that ProGen uses the same lower and upper
bounds to generate this data for each project, while PAGER allows the user to specify different
bounds for each project. The advantage is thatthe user has greater flexibility in designing
programs. If, for example, the researcher isinterested in investigating the impact of project
homogeneity on scheduling, he/she may generate and compare problems where the projects have
similar numbers of activities and activity durations versus problems where some projects have

many short activities and other projects have fewer, but longer, activities. On the other hand, the

4-6

researcher may want to design a program where some projects have controllably eary release dates

and other projects have controllably late release dates.

Table4-2. Basic Data Variables

Parameter Definition
P number of projects (the program is treated as projectp = 0)
J, the number of activitiesin project p
M, the number of modes of projectp, activity i
doim the duration of projectp, activity i, modem
?, the release date of projectp (including p = 0)
2, the due date factor of projectp (including p = 0)

Using the parametersin Table 4-2, the following data is generated, where the program is
considered to be projectp = 0.

a. Number of activitiesin project p, including the project source and sink.

J, ?round rnd 'Jg“'” ,J;“ax "2, p?L23..,P
b. Number of activitiesin the program, including the program supersource and supersink.

P
3,273,722

i?1

c. Number of modes of projectp, activity i.

M, 2 round rnd M ™" M™% p?123,...,P

d. Program/Project Release Dates.

r roo r
?, ?2roundrnd? ", 2 1, p?012,..,P

4-7

e. Program/Project Due Date Factors. These are used later, in Step 3, to determine actual
program and project due dates.

r roo r
?, ?roundrnd 2", ? &, p?012,..,P

f. Activity/mode durations. These are generated using the folloving algorithm, whereD isa
set of random integers and Dy is the kth element of D.

Activity Duration Algorithm

1 forp=123, .. P
2. fori=1,23, .., 3
3. k=1
4. whilek ? M ; do
begin
5. Dy := roundr:rndrﬁd;“i”,d;“axr:r:
6. ki=k+1
end
7. m=1

8. whilem? M, do
begin
9. d :=min(D)
10. K :=ksuchthat D.=d
1. dym:=d
122 D:=D\D,."?

13. m:=m+1

end

4-8

Step 3 - Network Generation The objective of this step is to construct a connected, acyclic,

non-redundant network with the userspecified complexity measure(s). Before proceeding with a

description of how the network is constructed, each characteristic of the network is explained.

Generalized Precedence Relationships

In the traditional activity-on-node representation of project scheduling problems, network
nodes represent activities and directed network arcs (from the end of one activity to the beginning
of another) represent finishrstart precedence relationships. When precedence relationships ae
generated such that activityi precedes activity j only if i < j, the project network is acyclic.
Generalized precedence relationships (minimum and maximum time lags between the start times of
two activities), however, have typicaly been treated in theliterature using backward arcs (e.g.,
from activity j to activity i), resulting in cyclic project networks (Schwindt, 1995, 1996; DrexI et
al., 1997; Salewski et al., 1997). Using this treatment, generalized precedence relationships are
created by generating cyclic project networks.

Since cyclic project networks can be intuitively confusing, PAGER uses a smplified approach
to create generalized precedence relationships. Graphically, a generalized precedence is
represented by aforward arc from the begiming of one activity to the beginning of another asin
Figure 4-2. Generalized precedences are created byconverting traditional finish-start precedence
relationships. Recall that traditional finish-start precedence relationships are a special case of
generalized precedences where the minimum time lag equals the duration of theoredecessor
activity and the maximum time lag isinfinite. Generalized precedences are, therefore, created by
re-specifying the minimum and maximum time lags for a subset of the existing precedence
relations.

PAGER alows the user to specify alower and upper bound for the minimum time lag and a
lower and upper bound for the maximum time lag. Minimum and maximum time lags may be
negative. For instance, if the minimum and maximum time lags from activity i to activity j are -3
and 5, respectively, and activity i starts at time t, then activity j may start anywhere in the interval
[t-3, t+5]. If the minimum and maximum time lags are both negative, the relationship is ill valid

provided that the minimum time lag is less than or equal to the maximum time lag.

4-9

O—0

Standard Precedence Generalized Precedence

Figure 4-2. Standard and Generalized Precedence Arcs
In the definitions which follow, arc set A is assumed to consist of standard precedences only.
This assumption can be made without loss of generality since, as stated above, generalized
precedences are treated as standard precedences with respecified time lags.

Connected Network

The problem network must be connected.

Definition 4-1. Network Connectivity (Kolischet al., 1992: 5)

Let G = (N, A) be adirected graph with node setN and arc set A. G is connected if, for

every node | ? N, thereis adirected path in G from the single source node toj and a

directed path inG fromj to the single sink node.

Definition 4-2. Reachability (Schwindt, 1996: 7)

A node | ? N iscaled reachable from nodei if :
@i j=i,or

(ii) thereisadirected pathWj with origini and terminusj.

Definition 4-3. Reachability Matrix of a Digraph (Schwindt, 1996: 7)

The reachability matrix R of digraph G = (N, A) isthe n?n matrix 1, ! oy With

?N

21 if jisreachable fromi
?9 .

" 50, otherwise

4-10

Definition 4-4. Network Connectivity (Alternate Definition)

Let G = (N, A) be adirected graph with reachability matrix R, source nodes, and sink

nodet. G is connected if, for every j? N, r¢=1andrp=1.

Acyclic Network

The network must be acyclic.

Definition 4-5. Strongly/Wesakly Connected (Schwindt, 1996: 8)

Let G = (N, A) be adirected graph with reachability matrix R. Nodesi, j? N, i ? j, are
strongly connected if j isreachable fromi (rj = 1) and i isreachable fromj (r; = 1).
Nodesi and j are weakly connected if they are not strongly connected but are connected in
the corresponding undirected graph ¢;; + 1 = 1)

Definition 4-6. Cyclic/Acyclic Network

Let G = (N, A) be adirected graph. G is cyclic if there exists any two nodesi, j ? N,

i ? j,suchthati andj are strongly connected. Otherwise,G is acyclic.

Non-Redundant Network

The network will be nonredundant. Though redundancy within the network does not
invalidate the network, it does adversely affect the coefficient of network complexity (CNC). If the
CNC (the average number of arcs per node) is used in determining the structure of the problem
network, then redundant arcs cause an overstatement of the CNC and a network structure with
fewer real temporal relationships than believed. Practically speaking, redundant arcs may also
increase the number of temporal relationships which must be considered whenscheduling the

resultant problem.

Definition 4-7. Redundant Arc (Schwindt, 1996: 9)

Let G = (N, A) be an acyclic digraph. Anarc (i, j) isredundant if there exists a directed

path W in G —(i,j) with more than one arc.

4-11

Remark 1. (Schwindt, 1996: 9)

Arc (i, j) isredundant if and only if F; ? 1for G" ? (N, A\{(i, })}) with reachability

matrix R .

Definition 4-8. Non-Redundant Network

Let G = (N, A) be an acyclic digraph. G is a non-redundant network if there are no

redundant arcsin G.

Relationships Between Projects

Just as activities within or between projects may be temporally related, projects themselves
may also be temporally related. Specificaly, the source node of one project is, to some degree,
related to the (numerically) preceding project. The degree of this relationship isreferred to asthe
project lag.

The project lag is determined using theproject lag coefficient, L,, which can take any
continuous value in the range of [0, 1]. Consider three cases, represented in Figure 43.

a Lp=0. Thestart of project p+1 is not dependent on projectp. Hence, the source node of
project p+1 is a successor of the program super-source node only. In Figure 43, the
project lag coefficient between projects 1 and 2 is zero.

b. L,=1. Project p+1 succeeds projectp. Thisis the case where one project,p, must be
entirely completed before another project,p+1, begins. This might happen if the projects
are sequential stages in a process where the end of one project and beginning of the next
represents a milestone in the process. The source node of projecip+1 is a successor of the
sink node of projectp. Projects 3 and 4 in Figure 4-3 have a project lag coefficient of one.

c. L,? (0,2) . The start of project p+1 is dependent on the sucessful completion of some

phase of project p, say activity j of project p. Activity j of project p may, for instance, be
the final approval of some critical technology needed for projectp+1. In Figure 4-3,
projects 2 and 3 demonstrate a project lag coéficient greater than zero but less than one.
The source node of projectp+1 is a successor of activity j of project p.

The project lag coefficient is randomly generated using the following equation:
L, ?rnd 07, L7 ¢,

4-12

where L’;"‘ and L™ are the user-specified minimum and maximum values of Ly, respectively.

Once the project lag coefficient for projectp has been generated, the activity in projectp which will
precede the source node of projecip+1 is determined by:

j ?round1? L (3, ?1)"

Project 1

Project 2

Project 3

g

Project 4

o

Figure 4-3. Project Lags

Network Complexity

Elmaghraby and Herroelen (1980) state that some measure of complexity in the project
network is reguired to (1) serve as a predictor of the processing time requirements for a particular
software package on a particular hardware platform and (2) enable proper comparisons between
competing algorithms. Three different measures of network complexity are used in the problem
generators discussed above: the coefficient of network complexity, the conplexity index, and
Thesen's restrictiveness measure.

Demeulemeester et al. (1993) and Kolisch et al. (1992, 1995) use the coefficient of network

complexity (CNC) as their measure of network complexity. CNC, the ratio of arcsto nodesin the

4-13

network, is easily implemented in a problem generator, but it has shortcomings. The measure is
not normalized to the interval [0, 1] and so does not reflect network complexity relative to the
number of network nodes. A CNC of 3, for example, has different implicatiors for a network with
100 nodes than it does for a network with only 10 nodes. In the 10ehode network, each node
immediately precedes only 3% of the network nodes, on average. 1n the 1éhode network,
however, each node immediately precedes 30% of the natvork nodes, on average, which isfar more
constrained than the 100-node network. To alleviate this problem, some authors have used the
order strength (e.g., Cooper, 1976) which is calculated by dividing the number of arcs by the
maximum number of possible arcs, n(n-1)/2. AsKolisch et al. (1992, 1995) suggest, though, the
maximum number of possible arcs includes redundant arcs and is far greater than arealistic
number of precedence relationshipsin a project network.

De Reyck and Herroelen (1996) study te impact of CNC on problem solution time compared
to a second measure, the complexity index (Cl). CI, ameasure of how near a network isto being
series-paralel, is defined as the number of node reductions (in concert withseries and parallel
reductions) required to reduce a project network to awo-terminal network (see Valdeset al .,
1982; Bein et al., 1992). De Reyck and Herroelen conclude that CNC is a poor indicator of
problem difficulty and propose that Cl is a superior measure. Agrawal et al. (1996) make the
same conclusion and use Cl in their problem generator, DAGEN. One drawback of using Cl is
that it requires the use of an activity-on-arc representation of the project network as opposed to the
activity-orrnode representation.

A third measure of network complexity is Thesen's measure of restrictiveness (RT) (Thesen,
1977). RT measures the degree to which the number of possible activity sequences has been
restricted by the imposition of precedence constraints. Schwindt (1995, 1996), who useRRT in his
ProGen/max generator, perceives RT as a more intuitive measure than Cl and conjectures that it
will play an even more important role than CI in predicting computational effort for resource
constrained project scheduling problems. De Reyck (1995 conducted an extensive computational
study and confirmed Schwindt's conjecture. Drexlet al. (1997) also use RT as the measure of
complexity in their ProGen/?x generator.

While problem generators have typically relied on a single measure of network complexity,
PAGER provides two measures, CNC and RT. These can be used separately or simultaneously.

RT isthe primary complexity measure used by PAGER because of its increasing acceptance asthe

4-14

best available measure, as well asitsintuitive appeal. CNC is also provided as an option for three
reasons. It providesthe user the ahility to generate problem sets comparable to other problem sets
cited in the literature. 1t provides meansto investigate the power of RT and CNC, used together, to
explain the solution time of problem instances. It may, perhaps, open the door for future research

in using simultaneous measures of network complexity.

Definition 4-9. Restrictiveness of a Graph (Thesen, 1977: 197)

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink noden = |N|,
and reachability matrix R. Let ? denote the number of possible permutations of the
sequence 4,,i,,...,i,7 of N'?2,..,n 2?2?72 N suchthatif j?2k? 1, ?20. Then,

I)
the restrictiveness of G is defined as P?l?lk)%,where? . ?2(n?2).
007? e

Remark 2. (Thesen, 1977: 197)

P?[0,1], P=0for paralld digraphs, and P = 1 for series digraphs.

While P may be an appropriate measure of network complexity, finding? is a difficult
combinatorial problem (Schwindt, 1995). Consequently, Thesen developed and tested over 40
different indirect estimators of P and found RT to yield the lowest mean relative error with respect
to P.

Definition 4-10. Digunctive Arc (Schwindt, 1996: 18)

Let G = (N, A) be an acyclic digraph with reachability matrix R. Disjunctive arcs are
imaginary, undirected arcs between pairs of nodesi, | ? N such that

M ="rji= 0.

4-15

Definition 4-11. Restrictiveness Estimator RT (Schwindt, 1996: 18)

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink noden = |N|,

and reachability matrix R. Let ny denote the number of digunctive arcsinG and let

A 7 (n?2)(n?3)
' 2

) be the maximum number of possible digunctive arcsin aweakly

connected digaph with node set N. Then, the restrictiveness estimator RT is defined as

nn?)?2?r, 27?71 ?26(n?)

RT 217 4 219 LN o EI7N
Ny (n?2)(n?3) (n?2)(n?3)

Schwindt (1996) provides Theorem 41 (stated here without proof) describing the behavior of
RT.

Theorem4-1. (Schwindt, 1996: 19)

(i) RT?[0,]].

(i) RT =O0for parallel digraphs.

(iii) RT = 1 for series digraphs.

(iv) Theinsertion of a nonredundant arc increases RT.

(v) Theinsertion of aredundant arc does not affect RT.

One of the unique features of PAGER is the role the reachability matrix R plays in generating
the problem network. While the exact procedure is reserved for the next subsection, the underlying
theory is developed here.

Recall that problem generators ProGenimax and ProGen/?x use RT as the measure of network
complexity. Both of thesegenerators use the same procedure as ProGen for creating an acyclic,
connected network. Generally, they

1. determine the number of start and end nodes, connecting these to the source and sink

nodes, respectively,

2. determine adirect predecessor for each noe which does not aready have one,

3. determine adirect successor for each node which does not aready have one, then

4-16

4. add additional nonredundant arcs until the desired complexity is achieved.

This ProGen-based procedure is simple to implement and is vety useful when CNC isthe
measure of network complexity. CNC is easily controlled through this procedure since arcs are
added one by one, increasing CNC by exactly 1/n, and the procedure is simply terminated when the
desired CNC isreached.

When RT isincorporated into the above procedure, arcs are added until RT has been met or
exceeded. Unfortunately, the procedure lacks direct control over RT. Unlike CNC, the addition of
an arc does not, in general, increase RT by any predetermined amount. The effectof an arc
addition on RT must be determined after the fact. Consider the following example.

Figure 4-4(a) depicts a network with CNC = 12/10 = 1.2 and RT = 13/28 ?0.464. If anarc
is added from node 2 to node 5, Figure 44(b), the CNC increases by 1/10 to 1.3 and the RT
increases by 1/28 to 0.5. If, on the other hand, with the addition of an arc from node 3 to node 4,
Figure 4-4(c), the CNC still increases by 1/10 to 1.3, but the RT jumps by 5/28 to 0.643. If the
desired RT is somewhere in the open interval between 0.5 and 0.643, it is unclear how the RT will
be achieved without a trial-and-error process of adding and removing arcs. Schwindt (1995, 1996)
adds arcs until the desired RT is met or exceeded and then stops. As demonstated above, the
resulting RT may be materially beyond what the user intended.

PAGER's approach to generating problem networksis to work in the domain of the
reachability matrix R. If R can be manipulated directly and a corresponding network produced,
then RT can be precisely controlled. The development of a project network using reachahility
matrix R requires Definitions 4-12 through 4-15 and Theorems 4-2 and 4-3. Unless otherwise

noted, these definitions and theorems are origina to this research.

Definition 4-12. Restricted Reachability Matrix

Let G = (N, A) be an acyclic digraph with reachability matrix R. Then, therestricted
reachability metrix R isthe n?n matrix ;% with

. o;,';lif j isreachable fromi,i ? |
" 250, otherwise '

Thatis, R ? R ? 1, wherei isthe n? n identity matrix.

4-17

(@

(b) (©)
Figure 4-4. CNC versus RT

Definition 4-13. Adjacency Matrix (Schwindt, 1996: 6)

Let G = (N, A) be an acyclic digraph. The adjacency matrix A of G isthe n? n matrix

ror A if i ed ., ., N2 A
At witha o Jbit I precedes] (D27 A
L ' 20, otherwise

4-18

Theorem42. R Uniquely DeterminesA

Theorem:

Proof:

Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A
and restricted reachability matrix R. R uniquely determines the adjacency

J— —_r
matrix A asfollows; A ? R?? R? ¢, where? operates on the elements of a

_ 2Lif x; ?1
matrix X suchthat ?(x;) ? ? b
20, otherwise

Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A
and restricted reachability matrix R . Assume, without loss of generality, that
nodes are labeled such that if T, ?1, theni <j. Show that a, ?F, 22 F.2

for each nodepair i,] ? N .

Three cases exist for any node pair i, j? N: (1) 1? j,(21? j andaj=1,

or (3) i ? j anda;=0. Consider each case separately.
Casel. 17

i?j? 1 ?0 byassumptionand 1; ?70? a; 70 . Then,

=2 [—
e ? 7 na
k? N
? 7 Fikrkj ? 7 Fikrkj
k2 7i k?2i?]
?20%, 220,70
k27 k?i?]
?0

andso ? T21? 0. Therefore, 0?2 a, 2T, ?? 7,7:20?07?0.
Cae2.i?] andaj=1

a; ?1? r; ?1. Thatis, (i,])? A? jisreachablefromi. Then,

4-19

—2 R
no??nm

k?N

? 9 rikrkj ? 9 ﬁkrkj ? 9 rikrkj
ki i7k?j K?

?? O?rkj ? 7 rikrkj ?? M 0
ki i7k?j k?j

? N5
i7k?j

Now, F.% ? ’) Tl ? 1 if and only if there exists somek, i < k < j, such that

Y i?7k?j
Fikr_kj ? 1. Assume such ak exists. Then, there exists adirected path, W,

fromi toj in G with more than one arc. Thisisa contradiction, however,

since G isnon-redundant and &; ? 1. Thus, F; ? 0 and ?r:Fijzr:? 0.

Therefore, 1? &, ? T, 22 21212021,
Cae3.1?] anda;=0

Since a; ? 0, two possibilities exist: (a) i does not reachj (rj; = 0) and (b) i

reachesj (rj = 1). Consider both possibilities.

(a) i doesnot reachj (rj =0). Then,

—2 R
no??nm
k? N
? 7 rikrkj ? 7 ﬁkrkj ? 7 rikrkj
k?i i7k?j K?
27 07y ? ? Ml 2?00
k?i i7k?j k?j
? P Ty
i7k?j

Now, T2 ? ’) [? 1 if and only if there exists somek, i < k < j, such that

Y i?7k?j
Fikr_kj ? 1. Assume such ak exists. Then, there exists adirected path, Wi,

fromi toj in G with more than one arc. Thisisa contradiction, however,

4-20

sincei does not reachj. Thus, F;* ? 0 and ?r:Fijzr:? 0. Therefore,

0?a, ?F, ??721207070.

(b) ireachesj (rj=1). Then,

—2 R
no??nm
k? N
? 7 rikrkj ? 7 ﬁkrkj ? 7 rikrkj
k?i i7k?j K?
27 07 ? ? Ml 2?00
k?i i7k?j k?j
? ? 0
i7k?j

Now, T2 ? ’) [? 1 if and only if there exists somek, i < k < j, such that

Y i7k?]
Fikr_kj ? 1, or in other words, there exists a directed path,Wj, fromi toj in G
with more than one arc. Sincei does reachj, F;* ? 1 and ?r:Fijzr:? 1.
Therefore, 0? &, ? T, ?? 7,21?21?1?0.

QED

Remark 3.

rQ
2:9,2 0f 20and? 42720
105 0ifr 21and? %221

3 Lifr 21and? %220

a; ?1; ?? fori,j? N.

Definition 4-14. r-Deletion

Let R bearestricted reachability matrix. The r-deletion of node pair I, m), I, m? N, is

the changefrom 7, ?1to T, 20 in R.

4-21

Definition 4-15. Feasible r-Deletion

Let R, be arestricted reachability matrix. Let R, be R, after the r-deletion of some
node pair (I, m), I, m? N . Ther-deletion of node pair (I, m) is feasible if
A,?R, ???ﬁg'z remains a proper adjacency matrix (that is, "AZ':". ={0, 1} for all

i,j? N).

Theorem 4-3. r-deletion Feasihility

Theorem: Let ﬁl be arestricted reachability matrix with corresponding adjacency

matrix A, Let R, be R, after the r-deletion of some node pair (, m),

I,m? N. Ther-deletion of node pair (, m) isfeasible if and only if

r.or

AL ?L

Proof: Let ﬁl be arestricted reachability matrix with corresponding adjacency
matrix A;. Let (I, m) be some node pair, |, m? N, such that rﬁﬁlrﬁlm =1
Let R, betheresulting matrix when R, 7, is changed from 1to 0. The
proof demonstrates (i) the rdeletion of , m) is feasibleif “A, " 21 and (i)

the r-deletion of , m) isNOT feasibleif “A,% ?0.

(i) Show that “A,% 2?1 ? ther-deletion of (, m) is feasible.

21. Ther-deetionof (,m)? R,: ?0.

Nonm

r r
Assume ‘A, ¢

1°Im

. . — r — r
Wheni?l and | ?m, R, 4 ? R, ¢,

r_2r r_2r r_2r r_2r r_2r r_2r
R34 ?? R R ?? RIL R PR, and
k?N k?N

4-22

’)rr_zr r’)r_ r ’)oﬂ‘_zr f’)!‘ r
o [[/ o [[/ ici I
24 R IR 1P R PR 1?7 A Y Thisimplies that

‘\

>\

>\
>\

2 % 1 4; remainsfeasiblefor i 21 and j 2 m.

Now consider wheni =1and j ? m.

r r r_ r
R,y ? R, and
R, 7’) RZ, RZ,
oo?ég?k%iz 2R RD 22 RLRD
k?m
) ') ?ég?k%iz? 2027 BB,
k?m
oo ?éf?k%iz 2R R 1772 '?if?k?iz
2 ’) '?:if?k?-'iz
k? N
o’hlz "lj
Therefore, A, Y, ? R, 4 22 R24 12 R, 4 22 Y 12 AL I
’ 2 A 1Y 1)

r r r r r
A, 4 20, then A, 1, ?D,1? (see Remark 3) and if ‘A, ¢, 21, then

r r r
At ?1. Thisimplies that A2 7 Al t; remains feasible for i 71 and

j?m.

Consider next wheni ? | and j ? m. The same argument used for the case

wheni ?| and j ? m holds here.

Finally, consider wheni ?1 and j ? m.

r—r r
R, 21, R, 20 and

4-23

Ry, 2? R R

2"k "2 "km

2 2 BALRY, FRIRD P RLRD,
k?l,m

2 2 R2)R:) 200200

? k’._l)ym'.?if'.?k'.?if?m 2022072
k?l,m

2 2 ROK) 2ROK 2R KD
k?l,m

22 R R,

2 ReY,

. r r 7!‘_ r ’)’)”_2" f’? — r s
1 1 [1 Iy 1 [1
Since A 4, ? R, ?7 R ?1land Ry 71,

r_r ' r__r r
?R7 1?20? ?:R3y 1?0. Therefore,

r r
/

— r ﬂ'_2f r . .)
Ay, ? R, ?7IRS Y 1?0707 0 which, of course, is feasible and

2 'Im
expected.

r
‘

(ii) Show that "Al 4t 20 ? ther-deletion of (I, m) isNOT feasible.

Assume A, 2 0. Ther-deletion of (I, m) ? r:ﬁzrﬁlm ?0.

';r_': 77’.’_2': ’4’) 77’.’_2': ’.7777_2': g
? R, ??1R2 120?77 1R2: 1?2 7?71R

r r
Consider ‘A, ! R

2 'Im

orr_zr 277”_2’ DR A 21907
] 17]]])] 1
Asshownabove, 7 RS54 1?7 MR7y 1?7 R ? A 717071 which

. . r r f,r r . . .
impliesthat A, 7 ??!R5 ! _{? ?1 whichisnot feasible.

QED

Network Generation Procedure

With the above definitions and theorems, it is now possible to construct a project netwik with

precise control over RT. Thisisdone by starting with a restricted reachability matrix R where

4-24

F, ?1forali,j? N,i<j, caculating A ? R ??'R2", randomly choosing a node pai (I, m),
1?1 ?m?n,suchthat &, ? 1, and r-deleting node pair (, m). This procedure, depicted in

Figure 4-5, isrepeated until the desired RT and CNC are obtained. Note that rdeletion is limited

to (I, m) where1? |, m? n. Thisisdone because network connectivity is maintained, by
definition, when T ?lfordlj=2..,nand T, 6 ?1forali=1,..,n1

Table 4-3 lists the input parameters required for generation ofa project network. The use of

these parameters is detailed below.

Table4-3. Input Parameters for Project Network Generation

Parameter Definition Bounds
S;“li” /S;“fx minimum/maximum number of start activities in project p [1, 99]
pan“i” / pan‘aX minimum/maximum number of finish activities in project p [1, 99]
S;W max number of successors per activity for project p [1, 99]
p;mx max number of predecessors per activity for projectp [1, 99]
LF, fraction of arcsin project p which denote generalized prec [0.0, 1.0]
|_|_';in / |_|_';a>< lower/upper bounds on the minimum lag times for projectp [-99, 99]
LU ?i” /LU ™ | lower/upper bounds on the maximum lag times for projectp | [-99, 9]
CNC, coeff. of network complexity (arcs per node) for projectp [0, 999]
tolene tolerance on coefficient of network complexity [0.0, 1.0]
TH, Thesen Restrictiveness measure for projectp [0.0, 1.0]
toly tolerance on Thesen Restrictiveness [0.0, 1.0]

4-25

Given Constant:
MaxTries

Initialize R
Calculate A

A
| Calculate RT and CNC |<—

RT too Yes r-reduce random

high? node pair (I, m).
’ UpdateA.
No

MaxTries?

FAILURE!

Tries=Tries+ 1
A

CNCin No

bounds?

Yes
Network
feasible?

Yes

| Save Network |

@ SUCCESS!

Figure 4-5. Generation of a Project Network

Figure 4-6 illustrates the project network generation procedure. The lighter gray cells of

matrix R correspond to entries of R which cannot be changed. The darker gray cells are those
which can be changed to generate a project network of some desired RT. |If the desired RT is0.39,
theillustrated example yields an acyclic, non-redundant, connected digraph (network) with RT =
0.39.

4-26

1 23 4567 8910

1 23 4567 8910

1 2 3 45 6 7 8 910

Initialization

RT=1

- =] - S — =] = =
— o — o | o —
— @ — © | @ |
“ ™~ | ™~ | ™~ “

- © - © — © A=
0 = 0 = wl o
< = < = <[5
o [ol [o5
N g N
- - -

LoON®®g ANmSIWwoON~©oQg TAMIOON~®O Qg ANmSIWwoON~©oQg
o|r~|o|w|<tm|a] G|~ ©o|w|m]m|a]| G|~ ©o|w|m]m]|]| ST Y KV B R 1 K] ¥
~lo|w|< oo O~ |o|w]s || @~ |o|w]s|e|en @l — —
©o|w||m|N| @lo|w|<tfm] =] R 1T B () [N O [t | | = m
||| Ll 721 B3 521 (5 D I7eY E53 (0] (V) N~ .a
< ||| Ol |ev| Ol |ev| Ol e
o] Olm || Ol || 0o B
N 2 NG | < m.
a o5 o5 ™ m

o~ o~ o~ o
- - - mv
-~ LoON®®g ANmIWwoON~©OoQg ANmSIWwoON~©oQg ANmSIWwoON~©oQg m
(@)
O
HEIEIEEEEEE =1 1 E 1 K Kl B B =1 1 E 1 K Kl B B =1 1 E ol K Kl BRI B ...nlp
el G I I I I R K 2l 1 e e T 1 T 2l 1 e e T 1 T S — — Ny
Al A A R T 1 R B 1 B B T 1 R el K= B Ol |||]| —t| = ..AM
||| NG GGG Dl B R 1 1 R K Nl — S
Al A== O ||| = Ol | =] Ole] =)= m
Al === Ol Ol WOl wn
J)) = = = = o
= O] O] o5 —
- N N N
- - -
p——~ h o ~®oo TNOSDOON~®Oo Q9 TNOSDOON~®Oo Q9 TNOSIDOON~®Oo 9

r-delete (7, 8)
=0.93

RT
r-delete (2, 9)
0.39

Series Graph
Iteration 1
r-delete (5, 6)
RT = 0.96
Iteration 2
and finaly,
Iteration 17
RT

1, the

Figure 4-6. Generating a Project Network
4-27

0, the resulting matrices (Figure 4-7) produce a parallel graph.

Notethat at the initialization phase of the network generation procedure when RT

network reflected in adjacency matrix A is precisely a series network. If the procedure continues

until RT

|

1 23 4567 8910 1
8

i
N
Plw
Pl
Plo
Plo
Pl
Pl
FPlo

5
N
Plw
Pls
Plo
Plo
Pl
Plo
Plo

5

Iteration 28
RT =0
Parallel Graph

CWONOUAWNE
N

COWONOUAWNE

COWONOUAWNE
N

=
=
=

Figure 4-7. Generating a Parallel Project Network

During the generation of a project retwork, there are afew other feasibility rules which must
be observed. The user has previoudy set lower and upper bounds for the number of start nodes
and the number of end nodes, as well as upper bounds for the number of predecessors and
successors a node may have (see Table 4-3). Additionally, to preserve the ordering of nodes, the
start nodes must begin with node 2 and be consecutively numbered. The end nodes mugt, also, be
consecutively numbered and end with noden-1. Therefore, once an arc is r-deleted, a check is
made to assure that the above feasibility conditions are satisfied. If they are not, the arcisre
inserted and anew arc chosen for r-deletion. If afeasible network cannot be found within a limited
number of trials, the program is halted with an error. The inability to generate a network within
the limited number of trials is likely attributable to inconsistent user-defined parameters. For
instance, there may be no feasible network for which the specified RT and CNC values can be
simultaneously met. The user may then reset the specifications and start over.

To construct a problem with multiple projects, a separate network is generated for each project
and then inter-project relationships are introduced. The first inter-project relaionships to be
introduced are the previously described interproject lags. The addition of inter-project lags yields
amulti-project program with a unique network for each project plus arcsto tie the projectsto each
other and to the supersource and super-sink nodes. The next step isto add additional arcsto
achieve the user-specified values for the program-level RT and CNC.

The procedure for adding programilevel arcsis similar to that used for generating project
networks with two exceptions. First,inter-project arcs may not only pass from some project p; to
another project p,, but may also pass from project p, to projectp;. To alow arcsto originate in
any project and terminate in any other project, it is possible to initialize the programlevel

reachability matrix, ﬁo, by arranging the reachability matrices, R » » from each project p in block

4-28

angular form. The intersections of these blocks correspond to the reachability of nodesin one
project from nodesin another project. Figure 48 illustrates what ﬁo might look like for a

program with three projects and a programlevel RT of 0.5. The white blocks correspond to the
project reachability matrices while the gray blocks are their intersections. Unfortunately, there is
no easy way to control the programlevel RT with this arrangement. The intersections between
project blocks could be initialized with zero entries and then ones added until the desired RT is
achieved. This equates, however, to the problem experienced with single projects where feasible
additions to the reachability matrix must correspond to arcsin the adjacency matrix. Thereislittle

control over RT thisway.

R, Ao
1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 1 2 3 45 6 7 8 9101112 13 14 15 16 17 18 19 20

1 1) 1 f 1f 1) 1f 1 1} 1) 3 f 1} 1} 1] 3 1} 1] 3 1 1 1 1 1]

2| 1] 1] 1 1] 1] 1 1 1 2 1

3| 1] 1 1] 1] 1 1 1 3 1] 1 1] 1 1]

4 1 4 1] 1

5| 1 5 1] 1

6| 1 6 1

7| 1 7 1

8| 1 1] 1] 1 1 8 1 1

9| 1 1 1 9 1] 1] 1 1]

10| 1 10 1] 1

11 1 11 1 1 1

12| 1 12 1

13 1 13 1

14 1] 1] 1] 1] 1] 1 1] 1 1 1 14 1

15 1| 1] 1] 1] 1] 1 1] 1 1 15 1 1 1

16 1 16 1 1]

17| 1 17 1]

18 1 18 1]

19| 1 19 1

20 20

Figure 4-8. Example of Multi-Project Program

An alternate way isto initialize the intersections between project blocks with ones and then ¥
delete node pairs corresponding to arcs in the adjacency matrix. The downside to this method,
though, isthat the initial reachability matrix (Figure 4-9) is overspecified (i.e., it hasan RT = 2.0)
and the adjacency matrix isinfeasible (i.e., it has non-zero/one entries). Randomly selected node
pairs would then need to be rdeleted until A, is feasible and then additional node pairs r-deleted
until the desired RT is obtained. The problem, again, isthat if RT islarge (close to one), it may be
difficult to bring A, into feasibility before the actual RT descends below the desired RT.

4-29

R, Ao

1 2 3 45 6 7 8 910111213 14 1516 17 18 19 20 1 2 3 45 6 7 8 9101112 13 14 15 16 17 18 19 20
1]) 1 1 1 1 1 3y 1 1 1 1 1 1 14 1 1411 1
2 1 1) af 1) 1y af 3 af af 1) 1f af 1] 1] 1f 1] 1] 1 2 -1
3 1 1 1 3 -1 -
4 1 4 -1f -1 -1
5 1 5 -1f -1 -1
6 1 6 -1f -1 -1] -1
7 1 1) 1) 3) 1) f 1) 1) f 1) 1 1 7 1] -1) -1 -1 -1 -1
8] 1 1] 1] 1] 1] 1 1] 1) 1] 1} 1) 1] af 1 1] 1) 1 8 -1
9 1] 1 1] 1] 1) 1] 1 1] 1) 1) 1) 1) 1) 1) 1) 1 9 -1f -1 -1
10| 1] 1] 1] 1] 1) 1 1) 1] 1) 1) 1) 1) 1) 1] 1) 1 10 -1f -1 -1
11 1] 1] 1] 1] 1) 1 1 1) 1) 1) af 1] 1) 1 11 -1f -1 -1 -1) -1
12| 1] 1] 1] 1] 1) 1 1 1) 1) 1) af 1] 1) 1 12 -1f -1 -1 -1) -1
13| 1 1 1] 1} 1) 1 1 1] 1 1) 1 3 1 13 -1f -1 -1] -1} -1 -1
14 1) af 1] 1] 1] 1) 1} 1 1] 1] 1f 1] 1 115191 14 -1
15] 4] 2 1) 1) 1] 1) 1] 1] 1] 1] 1] 1 1 1] 11 15 -1 -1
16| 4] 2 1) 1) 1] 1) 1] 1] 1] 1] 1] 1 1 g1 16 -1] -1 -1 -1
17| 4] 1) 1) 1) 1) 1) 1) 1) 1 1) 1) 1 1 17 -1 -1 -1 -1) -1
18| 4] 1) 1) 1) 1 1) 1) 1) 1 1) 1) 1 1 18 -1 -1 -1 -1) -1
19| 1 4 1) 1 1 1} 1 1 1} 1 1§ 1 1 19 -1 -1f -1] -1} -1 -1
20, 20

Figure 4-9. Initializing R, with Ones

To overcome the problem of generating the progrardevel network structure, recall that a
multiple-project program can be viewed as a single super-project. Like any project, the nodes of a
super-project can be numbered in away such that if nodei precedes nodej, theni <j. Withthisin
mind, the procedure used by PAGER is to randomly intermix and renumber the nodes of the
projects such that nodes from the same project retain their relative ordering within the superproject
and such that the predetermined inter-project lags retain their relative ordering within the super
project. A reachability matrix identical to the ones used for the projects can then be constructed
(Figure 4-10) and node pairs r-deleted until the desired programlevel RT is obtained.

R, Ao

1 814 2 91015 3 4 51611 17 6 18 19 12 7 13 20 1 814 2 91015 3 4 5161117 618 19 12 7 13 20
1] 1) 1) 1] 1) 1) 1) 1) 1 af af 1f 1f 1] 1f 1f 1f 1} 1] 1 1 1
8 4f 1) af 1f 2f 2| 1) 1) 1) 2] 2] af 1) 1] 1] 1f 1f 1 8 1
14 1) 1) af af 1f af 1] 1] 1) 1) 1] 1] 1) 1] 1) 1] 1 14 1
2 1) 4 af 1f 1f 1f 1] 1) 1) 1) 2] 1) 1) 1] 1] 1 2 1
9 1) 1) af 1f 1f 1| 1) 1] 1) 2| 1] 1) 1) 1] 1 9 1
10| 1) 1 af af af 1f 1| 1] 1f 1f 2f 1] 1) 1 10 1
15] 1) 1 af af af 1f 1] 1f 1f 2f 1] 1) 1 15 1
3 4] 2 af af af 1| 1f 1f 1f 2] 1] 1 3 1
4 if 1f 1] 1) 1) 2 1) 1) 1] 1] 1 4 1
5 af 1f 1] 1) 1f 1f 2f 1] 1) 1 5 1
16| 1| 1) 1f af 1] 1] 1f 1] 1 16 1
11 1] 1) 1] 1f 1] 1] 1] 1 11 1
17| 1| 1f 1) 1f 1] 1| 1 17 1
6 1] 1f 1] 1 1] 1 6 1
18| 1 1f 1] 1] 1 18 1
19| 1] 1] 1f 1 19 1
12| 1] 1] 1 12 1
7 1 1 7 1
13| 1 13 1
20, 20

Figure4-10. Initiaizing R, with Mixed Project Nodes

The second exception which makes programlevel network generation different from project

level network generation isthat the current project network and inter-project lags must be

4-30

maintained. Maintenance of the current structuresis assured through theMASK matrix. The
MASK matrix is, in essence, the reachability matrix corresponding to the current network
structures when viewed as a super-project. The MASK matrix is obtained by finding the shortest
path from every super-project node to every other superproject node. If the shortest path from one
node to another isfinite, then the latter node is reachable from the former and theMIASK matrix
receives a unit entry corresponding to that node pair. When randomly selecting a node pair to ¥
delete, not only must the node pair correspond to an arc in the adjacency matrix, but the node pair
must also have a zero entry in theMASK matrix.

As with the project networks, node pairs are rdeleted until the programlevel RT and CNC are
obtained. It is possible for there to exist inconsistencies in the userdefined specifications (Table
4-4). In particular, the inter-project lags and RT may be inconsistent. If the user, for example, has
specified alag of one between each project, the resultant programlevel RT will be one. If the user
has specified an RT less than one, the r-deletion of node pairs will terminate before the desired RT
isobtained. In thiscase, the program will save the current network with awarning that the
specified RT could not be satisfied. (That is, the algorithm is programmed so interprojects lags
take priority over the RT.)

Table 4-4. Input Parameters for Inter-Project Network Generation

Parameter Definition Bounds

Ln;in /Ln;ax min/max lag between projectspand p+1,p=1, 2, 3, ..., P-1 | [0.0, 1.0]

S maximum inter-project successors per activity [1, 99]
P maximum inter-project predecessors per activity [1, 99]
LFo fraction of inter-project arcs which denote generalized prec [0.0, 1.0]

|_|_'gin /LL7™ lower/upper bounds on the minimum interproject lag times [-99, 99]

LUM™ /LU ™ | lower/upper bounds on the maximuminter-project lag times | [-99, 99]

CNGC, program-level coeff. of network complexity (arcs per node) [0, 999]

THo program-level Thesen Restrictiveness measure [0.0, 1.0]

Once the project networks and the prograrevel network have been generated, a fracton of

the project-level and program-level arcs are randomly chosen to beconverted into generalized

4-31

precedence relationships. The user has aready specified (through the specification file) the
fraction of project-level and program-level arcs which will be converted. The randomly chosen
subset of arcs are added to theLAG matrix and are given minimum and maximum lag times. The
minimum and maximum lag time, LL and LU, respectively, for each lag relationship are

determined using the following equations:

LL ?round TndLL™™, LL™ "%
LU 2 roundrnd LU ™ LU ™ %,

After the conversion of a subset of arcsto lag relationshipsis complete, the remaining arcs are
added to the matrices of activity successors (UCC) and predecessors (PRED). If the lag
conversion leaves an activity without a successor, an arc is added from the activity to the sink node
of the respective project. This assuresthat the activity must be completed before the project is
completed. Similarly, if an activity is left without a predecessor, an arc is added from the source
node to the activity to assure that the activity does not start before the project does.

Next, the program horizon is calculated. Thisis done simply by adding the duration of the
longest-duration mode of each activity. The program horizon represents the minimum amount of
time required to complete the program if resources are constrained to a point where only one
activity can be scheduled at atime and in its longest-duration mode.

Early and late start times of each activity are also calculated in the network portion of
PAGER. Early and late start times are calculated using the shortest-duration modes of each
activity as explained in Chapter I11. The Generalized Critical Path Method (GCPM), introduced in
Chapter 111, is used to determine the early and late start times with modifications to account for

generalized precedence. The GCPM algorithm, as outlined in Chapter 111, is repeated below.

Generalized Critical Path Method (GCPM)

1. Settheearly start time of each activity equal to the release date of the project of whichit is
amember.

2. For each activity i, in numerical order, change its early start time to the greatest of the
following:

a. itscurrent early start time,
b. the early start time plus duration of each of its standard predecessors, and

4-32

c. theearly start time of activity j plus minimum time lag between activity j and activity
i, for each activity j which is a generalized predecessor of activityi.

3. If the early start time of any activity changed at Step 2, repeat Step 2.

4. For each activity i, in numerical order, check each activity for which activityi isa
generalized predecessor. If the early start time of any generalizedsuccessor of activity i is
greater than the early start time of activityi plus the maximum time lag, change the early
start time of activity i to the greatest of the early start time minus maximum time lag of
each generalized successor of activityi.

5. If the early start time of any activity changed at Step 4, repeat Step 2. |If not, the early
start time of each activity has been found.

6. Set the late start time of each activity equal to the program horizon minus its duration.

7. For each activity i, in reverse numerical order, change its late start time to the least of the
following:

a itscurrent late start time,

b. thelate start time of each of its standard successors minus the duration of activityi,

c. thelate start time of each activity generalized successor of activityi minusits
minimum time lag from activity i.

8. If thelate start time of any activity changed at Step 7, repeat Step 7.

9. For each activity i, in reverse numerical order, check each activity which is a generalized
predecessor of activityi. If thelate start time of activity i is greater than the late start time
of any generalized predecessa plusits maximum lag time, change the late start time of
activity i to the least of the late start times plus maximum time lag of each generalized
predecessor of activityi.

10. If the late start time of any activity changed at Step 9, repeat Step 7. Ifnot, the late start
time of each activity has been found.

While the GCPM is, in principle, fairly straightforward, implementation of the algorithm is
considerably more complex. To understand the implementation, consider, first, Definitions 416
and 4-17.

As an example, suppose that Activities 2 and 3 (in some project) have a generalized precedence
relationship and that Activities 3 and 5 (in the same project) also have a generalized precedence
relationship. Using the PAGER convention, the lower numbered ativity is said to be the
generalized predecessor and the higher numbered activity is said to be the generalized successor.

Thus, Activity 2 has one generalized successor, Activity 3. Activity 3 also has one generalized

4-33

successor, Activity 5. If the set, N;, contains the explicit generalized successors of activityi, then

the problem statement would specify the following setsN, = {3} and N3 = {5}.

Definition 4-16. Explicit Generalized Precedence

Explicit Generalized Precedence is used to describe a generalized precedence relationship
explicitly specified in the problem statement. The set, N;, contains the explicit generalized

successors of activity i.

Definition 4-17. Implied Generalized Precedence

Implied generalized precedence is used to describe a generalized precedence relationsip
which is either explicitly or not explicitly specified in the problem statement. The set, Ni* ,

contains theimplicit generalized successors of activity i.

Continuing the example above, the problem statement explicitly specifiedN, = {3} and N; =
{5}. The PAGER convention specifying the higher numbered activity as the generalized successor
of the lower numbered activity is used solely to avoid defining generalized precedence relationships
twice in the problem statement. |t shouldbe recognized, though, that if Activity 3 is a generalized
successor of Activity 2, then Activity 2 is also a generalized successor of Activity 3. Of course,
the minimal and maximal time lags are different, but they, too, arerelated. The following
relationships hold for any two activities (i and j) with a generalized precedence relationship:

j?2N, ? i?N;]
Pmin 9 o
" 2270
Pma o pomin
P ? 27
In the case of Activities 2 and 3, suppose 2% ? 2 and 2% ? 5. That is, if Activity 2 starts

at timet, then Activity 3 must start in the interval [t+2, t+5]. Thisis equivalent, though, to saying
that if Activity 3 startsat time s, then Activity 2 must start in the interval [s-5, s-2]. In other

words, ?%' ? ?5 and 25 ? ?2. Therefore, while the problem statement (using the PAGER

convention) would explicitly specify that N, = {3}, it isimplied that 2?2 N .

4-34

Though the discussion of explicit and implicit generalized precedences may appear academic,

it isimportant to the GCPM to identify all generalized precedence relationships. To account for
the unspecified relationships, set Ni* is defined as the union of N; (the explicit generalized
precedence relationships of activity i) and theimplicit generalized precedence relationships of
activity i. 1t has been discussed that if N, = {3}, then 2? N . It also holdsthat if N5 = {5}, then
37? N; . Somewhat less obviousis that there is also a generalized precedence relationship between
activities 2 and 5, where 2? N and 5? N, . Onceal of the relationships have been identified,
the following sets are defined: N, ? 3,57, N; ? 2,57, and N, ? 22,3?. Thefirst task of the

GCPM isto define al of the implicit generalized precedence sets.

Notation for Generalized Critical Path Method

Activity Sets:
AF = the set of activities which are eligible for labeling and have no generalized precedence
relationship
A~ = theset of activities which are eligible for labeling and have a generalized precedence
relationship

A° = the set of activities which have been labeled
Al = aset of activities where eachactivity is a generalized predecessor of every other

activity in the set

O, = theset of activities which precede activityi
S = the set of activities which succeed activityi
Ni = the set of explicit generalized successors of activityi
Ni* = the set of implicit generalized successors of activityi

Time-Related Parameters:

? = the program release date

D = theprogram planning horizon

e = the early start time of activity p(i)

l; = thelate start time of activity p(i)
d,, = theduration of activityi in modem

4-35

Qmin
i

the minimal start-start lag time between activitiesi and |

2 = the maximal start-start lag time between activitiesi and j
Generalized Critical Path Method
Sep 1 Seti=0.
Sep 2 Seti=i+1. Ifi?J,goto Step 6. [For each activityi = 1 to J, do the following...]
Sep 3 If N, ?? ,goto Step 2. [If activityi has no explicit generalized successors, proceeal
to the next activity.]
Sep 4 Let N ? N,. Setj=1. [Activity i hasat least one explicit generalized successor.]
Sep5 LetN; 2N, Nj.9\1?, where ’)N,'?J isthe j-th element of set N; . Set
702 270y, ad 2R 2 20y 2 7K, foreach k? N7 setj=j+
1 If ’)N,'?J ?? ,goto Step 2. Otherwise, repeat Step 5.
Sep 6 Set the early start time, g, of each activity equal to the project releasedate, ? . That
_ ?? if d; 20 .
is, g ?7?) ,fori=1,2,3,...,J.
2??1 ifd,?0
Sep7 LetA>=? A°={1},andA"- =2 .
Sep 8 Select the lowest indexed activity, say activityi, where

1?2 A AYj? AL 2j2 N

4-36

Sep 9

Sep 10

Sep 11

Sep 12

Sep 13

Sep 14

For each activity | ? 17? Ni* , Set the early start time of activity j to the greater of its

current early start time and the early start time plus duration of each of its

? o) 7
t)
3max'>e max'7e 2d,,? max'7e 91’?., if d;, 20
’? . y
predecessors. That is, g 25 3 dmo dkl’?O E
t)
’?maX’?e max'7ek ? dkl ’?]? max?e 79 if djl 20
? k’70 k')o
? 8 dkl”o dkl"O 3

112 A% let A°2 A% 92, AF2AT\T7 4j25,0,7 AN, 22 L and

AL 2 A ?j|j?s,oj?AS,Nj???. If]AF AL727 gotoStep8.
Given i? A j? A, 2j2 N % st 27?7 N

For each i ? Al, inturn, set

? 2
t)
Zmaxoq max')e ’7’?’,‘]‘3"7 oej 20 ’?1??? if d;?0
J”N J”N
AR
5 3
2max7g , max7e 220 ’717max% ’7’7"‘3"7,) if d,?0
3 3 PN i?N;
P p djl?O d]l')o
5
8max*;e max & 2 27" max'h 99’“‘”917’ if d,, 20
e 25 2 W7 470 21?2 N
? 99”“”9 2 max 2 99”“”77 ifd.?
8maxgeJ zn@é?g 14 Zn% (el g ifdj;?0

Lat AS2 A5 AL A2 AF 2 S fori? ALO 2 ASN 22 7, and
A2 MAT? Y2 stori? A0 2 AN 22 L 1E TRE A2 goto

Step 8.

Renumber activities from earliest start time to latest start time (break ties by index).

4-37

Sep 15

Sep 16

Sep 17

Sep 18

Sep 19

Sep 20

Sep 21

Set the late start time, |;, of each activity equal to one time unit more that the project

?D?d,;?1 ifd;?0 .
horizon, D, lessitsduration. That is, |, ? 2 ,fori=1,2,3,...,J.
7D if d;?0

LetA>=7? ,A°={J},and A" = ? .

Select the highest indexed activity, say activity i, where
17 A AYj2 AL 2j2 N

For each activity | ? 17? Ni* , Set the late start time of activity j to the lesser of its

current late start time and the late start time of each of its successors less the duration

2 32
Zmlnol mln? ’?djl,mln? ’?d ’?17? |fd 1?70
’? p ? ? p
of activity j. Thatis, I, 2% ,3) oo 070 ; ?
? %
9m|n'>l min?k 212min, % if d;; 20
k?S, k?s,
? 3 i1 70 1 70 3

12 A%, let A°2 A% 92, AF2AR\T7 4j20.,5 2 A°N; 22 L and

AL 2 A ?j|j?o,,sj?AS,Nj???. If]AE AL722 | goto Step 17.
Given i? A j? A, 2j2 N % st 27?7 N

For each i ? Al, inturn, set

? 2

mln'>l mln? ’7’7";'”7m|n? ’7’7’“'”’717) if d,?0

53 M Y 3

22 9?0 9?0 : and

I)

omlnol mln? ’7’7m'”’717m|n? ’7’7’“'”7? if d,?0
i?N; ! i?N;

3 3 d11’70 djl’?O

gmin3 mind, 220 Tmind, 227= 213 it d, 20

25 20 70 L2j? N
. ? mex 17 ? max’)? '
’7m|n'>l mm 2207 ?2mind, 2?27 5 if d;; ?0
3 24, d;?0 ?)

4-38

Sep22 Let AS?2AS AL A2 AT fjlj20fori? ALS 2 A° N 22 7, and
A2 M\A? fj20foriz AL 2 AN, 22 % 1 E A722 goto

Step 17.

Steps 1 through 5 determine all of the implicit generalized precedence relationkips of each
activity. Asthe algorithm labels activities, it does so by labeling activities without any generalized
precedence relationships one at atime (asin traditional CPM), and by labeling activities with
generalized precedence relationships as aset. The algorithm, therefore, collects the activities with
generalized precedence relationships and holds them until all such related activities are eligible for
labeling based on having all of their predecessors labeled. When these sets of activities ae labeled,
all of the interrelationships must be known; hence, Steps 1 to 5.

The rules for scheduling zero-duration activities differ dightly from those with positive
duration. If the predecessor of a zereduration activity finishes at time t°, then theearliest the zero-
duration activity may start is t° rather thant’ + 1. The relationship of these activities may be seen
in Figure 4-11, where the precedence relationships of activitiesi throughi+3 are shown and where

activitiesi+1 and i+2 have zero duration.

Activity | Duration

+ |11
i+1 0 |:|
0]
3 [T T]

i+2

i+3

Figure4-11. PrecedenceFeasible Early Start Times of Zero-Duration Activities

Steps 6 through 13 perform the early start time labeling. Each activity isfirst labeled to start
at the project release date (Step 6), then adjusted to start as soon as allof its predecessors have
finished (Step 9). For activities with no generalized precedence relationships, Step 10 updates the

4-39

activity sets and labeling recommences with the next eligible activity in Step 8. For activities with
generalized precedence reldionships, Step 11 forms the set of all activities which are, in essence,
being labeled smultaneously. In Step 12, the early start time of each activity i is delayed (if
necessary) to assure that none of the maximum lags associated with that activity wil be violated,
and then all other activitiesin the set are delayed (if necessary) to assure that none of the minimum
lags associated with activity i are violated. Step 13, then, updates the activity sets and labeling
recommences at Step 8.

Once early start times have been determined, Step 14 renumbers the activities from earliest
start timeto latest start time.

Steps 15 through 22 determine the late start times of each activity by essentially reversing the
early start time labeling process. Late start times are bound by the project horizon, in the same
way early start times are bound by the project release date. With both early and late start times
determined, the feasible start time windows of each activity are known.

Finaly, program and project due dates are calculated using the due date factors found during
basic data generation and the following equation:

DD, ?round €S, ??,* LS, ?ES,;#,p=0,1,2,..,P

where DDy is the program due date.

Step 4 - Resource Data Generation The generation of data for regular renewable and
nonrenewable resources is nearly identical to that detailed by Kolischet al. (1992, 1995) for
ProGen. The primary difference is that in multiple-project problems, ProGen generates only
program-level resources (i.e., project-specific resources are not considered). The procedure
employed by PAGER generates projectlevel and program-level resources using the input data
listed in Table 4-5.

The generation of resource data begins by identifying the number of renewable and

nonrenewable resaurces for each project and for the program using the following equation:

m
max "

7, #%p=012..,PL

min

p H

2| , ? round rnd P|

wherep = 0 refers to the programtlevel data.
The demand for resources is generated next by identifying which resources are demanded by

each activity-node combination and how much of those resources is demanded. This procedure,

4-40

which uses parametersQ" / Qr* . RF

et It PL(F 21), P,(F ?2),and 2, is

p? “RF
identical to ProGen's (see Kolischet al., 1992 & 1995).

Resource availahility is the last resource datato be generated. For regularly available

resources, the procedure used in ProGen is employed where a minimal demand, K ™", and a

pg

max

maximal demand, Kpg

are calculated for each resourceq in project p. The availability of
resourceq in project p is a convex combination of the minimal and maximal demands with the
resource strength as a scaling paramete. The resource strength is drawn from the uniform

distribution :RSS“;” , RSF']?_?X ! and the resultant resource availability is:

r . r .
2 e min 2 e max 2 min ,,
Kpq ?round K" ? RS, K" 2Kt

Table4-5. Input Parameters for Resource Data Generation

Parameter Definition Bounds
|?|f:in /If)|:a>< min/max number of resources of type ? for project p [0, 10]
Q;i_jn /Q;j_)ax min/max number of resources of type ? requested per job in [0, 99]
project p
RF,, resource factor of resource type ? for project p [0.0, 1.0]
r;;in /r;,;m min/max resource demand for resource type?? for project p [0, 99]
RSFT?m / ngz_)w min/max resource strength for resource type?? for projectp | [0.0, 1.0]
ERS;," /ERST | min/max expediting resource strength for resource type? for | [0.0, 1.0]
project p
Pp?(F ?1) prob. of duration-constant demands for resource type? for [0.0, 1.0]
project p
P, (F ?2) | prob. of duration-nonincreasing demands for resource type? | [0.0, 1.0]
for project p
20 resource factor tolerance [0.0, 1.0]

For program-level resources, p =0
For project-level resources,p=1, 2, ..., P-1

4-41

N

Evaluation of the minimal and maximal demands is as follows, noting that rplmq and r,, are

the respective renewable and nonrenewable resource requirements for resurce q when activity i of

project p is executed in modem. For nonrenewable resources, then

p’)l M

m|n t) N
Koy ?? rﬂ'{"}rplm

and

p”l M

KX 2 7? max 4N 7
m21 pimg *

i?2

For renewable resources,

Jp?7L oM
K min max9m|n7r

Pa 172 o mo1 plmq
and the maximal demand is the peak demand of the precedenceand lag preserving the earliest start

schedule. With each activity i executed inits lowest indexed mode employing maximal perperiod

*

oimg 2 Vi * ,the resourcedependent

M
- * R *
demand, that is, where Moig ? max')rplmq and Myq ? rrr:m |r

early start schedule is calculated with corresponding earliest start times, ES. , and completion

pi

times, CTS? . The peak per-period demand is then:

honzong CTi 3,7 R 8

Kgq‘ax ? ntl)alxo ’) ? rpim*_kq’?.
8(’7E5p, iz - B
Note that when the resource strength is zero, there is just enougiresource to complete the
program in the program horizon. When the resource strength is one, there is enough resource to
complete the program in its unconstrained CPM time.
To caculate the availability of expediting resources, the same minimal and maximal demands
are used. However, the sum of resource strengths for regular and expediting resources should not

exceed one, so that expediting resource availahility is calculated as:

': ': max m'n':':
EK ,, ? round ERS, K ;7% 2 K 3" i
Total resource availahility is then

4-42

r . r . r r .
2 2 W min 2 W max 2 min "o , W max 2 min ,,
Kpg 2 EKyq ?round K 3" ? RS, K " 2 K" #?2round .ERS, K " 7 K" &

2 K™ 2 Found RS, k™ 2 K" P2 round ERs,,, K™= 2K 0 7
The costs associated with expediting resources are generated in the next step.

Step 5 - Cost Data Generation There are three types of cost data generated depending on the

desired objective function: program/project completion penalties, mode costsand expediting
resource costs. Theinput data required to generate this datais listed in Table 46.

If the objective function of the program scheduling problem includes the minimization of
program and project completion costs, program and project compition penalties are assessed
starting at one period past their respective due dates. That is, there is no penalty if the
progran/project ends on or before its due date. If the program/project is one period late, the
progranvproject penalty base value isassessed. For each additional period that the
progranmv/project is late, the penalty is increased by the penalty increment.

The program-level base penalty, PEN,,, , and penalty increment, PEN,, , are specified by the
user in the specification file. All other costs are related to the program penalty base value and

increment. For instance, the completion penalty base value of a projectp, PEN _,, isafraction of

po’
the program penalty base value and is generated using the following equation:
PEN ,, ? round PEN, * rnd PEN ™"

po *

PEN S &,

while the penalty increment, PEN , , is afraction of the program penalty increment and is

generated using the following equation:
PEN , ? round PEN,, * rnd PEN ™" PEN ™" .

p1

The importance of completing project p is, therefore, tied directly to the importance of
completing the program. If the project's penalty increment is half of the program's penalty
increment, then a one period delay in the completion of the project is half as costly as a one day
delay in the completion of the program.

Similarly, the costs of activity modes and start times and of expediting resources are tied to the
program completion penalty base value and increment. This provides the user away to easily

reflect the relative cost of scheduling decisions to the cost of other decisions.

4-43

A final noteisthat the cost of activities can be timeincreasing, time-constant, or time
decreasing. Permitting activity costs to change over time allows the user to design problems with
positive and negative cash flows. Again, activity costs have a base value related to the program

penalty base value and a per-period increment (positive or negative) related to the program penalty

increment.
Table4-6. Input Parameters for Cost Data Generation
Parameter Definition Bounds
PEN,, program base penalty [0, 9999
PEN,, program penalty increment [0, 9999]
PEN ' / PEN T | mi/max project base pendty *, p=1, 2,..., P [0.0, 99.0]
PEN g‘l‘“ | PEN ;¥ min/max project penalty increment **,p=1, 2,..., P [0.0, 99.0]
MCTy' /MCs* | min/max base mode cost *,p =1, 2,..., P [0.0, 99.0]
MC,;“lin / MC;J“;‘X min/max mode cost increment ** p=1, 2,..., P [0.0, 99.0]
Pp',G 21% probability of time-increasing activity costs, p=1, 2,..., P [0.0, 1.0]
Pp’:G 22" probability of time-decreasing activity costs, p=1, 2,..., P [0.0, 1.0]
ERCS“” | ERC™ min/max expediting renewable resource base cost *, [0.0, 99.0]
p=01..P
ENCE“” / ENCS“"‘X min/max expediting nonrenewable resource base cost*, [0.0, 99.0]
p=0.,.,P

* denotes that these values are fractions of the program base penalty cost
** denotesthat these values are fractions of the program base penaly increment

Step 6 - Problem Output. Once a problem instance has been generated, it may be output in
PAGER, ProGen, or MPS formats. The PAGER and MPS formats can reflect all of the features
that PAGER is designed to produce. The ProGen format, on the ther hand, is not designed to

reflect generalized precedence relationships, expediting resources, or mode costs, and so ProGen

4-44

format is unavailable if any of these features are invoked. A sample PAGER output fileis
included as Appendix C.

PAGER Implemertation

PAGER is programmed in FORTRAN 77 with a number of FORTRAN 90 extensions. It has
been implemented on an |BM-compatible computer with a Pentium 750 MHz processor and 256
MB of RAM, running Windows NT. This machine was used to generate the test protbems used in
ChaptersV and VI. Figures 4-12 through 4-13 report the distribution of times required to generate
atotal of 10,521 test problems. Problems ranged in size from single projects with 5 activitiesto
four-project programs with 50 tota activities. Overall, PAGER required an average of 0.95
seconds to generate a problem, with a minimum generation time under 0.01 seconds, a maximum
time of 155.67 seconds, and a variance of 19.90 seconds.

Figure 4-12 is a Box and Whiskers plot of problem generation times. The whiskers show the
minimum and maximum generation times, while the box shows the mean plus/ minus two standard
deviations. Generation times are shown according to the number of activities in the problem.
Since the maximum generation time for problems with 50 activitiesis large compared to other
problem sizes, the box and whiskers for smaller problem sizes are difficult to see. Therefore, the
Box and Whiskers plot is repeated in Figure 413 with the 50-activity problems removed and the
y-axis time scale decreased.

Problems with 10 activities and with 50 activities both have an outlier. One problem with 10
activities required 8.43 seconds, compared to the next longest generation time of 1.11 seconds.
One problem with 50 activities took 15567 seconds, compared to the next longest generation time

of 68.51 seconds.

4-45

Generation Time (seconds)

Box and Whiskers (+/- 2 Std Dev)

180

160

140

120

100

80

60

40

20

5 10 18 20 26 30 34 42 50
Total Activities

Figure 4-12. Distribution of Generation Times (5 to 50 Activities)

Generation Time (seconds)

Box and Whiskers (+/- 2 Std Dev)

Total Activities

Figure 4-13. Distribution of Generation Times (5 to 42 Activities)

4-46

Distribution of Generation Times by Number of Jobs
6000
5000
4000
[%)]
Q
[&]
c
2 3000
]
[&]
[&]
O
2000
1000 -
o . - il
0.01 0.1 1 10 100 >100
Time Bin (seconds)
‘ m 5 Jobs @10 Jobs m 18 Jobs m 20 Jobs m 26 Jobs m 30 Jobs m 34 Jobs m 42 Jobs O 50 Jobs ‘

Figure4-14. Didtribution of Generation Times by Number of Jobs
Figure 4-14 presents the generation time data by time bin. The bars on the chart represent the
number of problems generated within the bounds of the respective time bin. Different shaded bars
are used to differentiate problems of different sizes (.e., number of activities). The vast mgjority

of problems (95%) required no more than one second of generation time.

Summary and Conclusions

Table 4-7 summarizes the key features of PAGER and the other generators discussed above.
All of the generators can generate sngle-project, single-mode problems with renewable resources.
Differences between the generators include their multiproject capabilities, the types of resources
generated, the measures of network complexity used, and the measures of resource availability
used. All of the generators output problemsin their own specific format. In addition, some
generators are capable of output in formats used in other test sets (Patterson and ProGen) or, in the
case of PAGER, in MPS format.

PAGER isthe first problem generator to directly exploit the reachability matrix of a network

to generate problem networks with precisely controlled values of RT. It isalso thefirst to

4-47

simultaneoudly use two measures of network complexity, RT and CNC, in the network generation
process. PAGER fills the need to generate multiproject problems with projectspecific networks

and resources, interrelationships between projects, and programlevel network structure and

resources.

4-48

Table4-7. Key Features of Problem Generators

DDH | ProGen |.../max | .../?X | DAGEN | PAGER
Multi-Project Problems X X X
w/Program-Level Resources X X X
w/Project-Specific Resources X
w/Time-Related Projects X
w/Unique Project Networks X
Multiple Modes X X X X
Minimum Time Lags X X X
Maximum Time Lags X X
Changeover Times X
Mode and Set of Mode | dentity X
Forbidden Periods X
Mode Costs (Time Constant) X X
Time-Increasing/-Decreasing X
Expediting Resource Costs X
Network Complexity Measures:
Coefficient of Network Complexity X X
Thesen's Restrictiveness X X X
Direct Use of Thesen Restrictiveness X
Complexity Index X
Choice of Measures X
Simultaneous Measures X
Renewable Resources X X X X X X
Nonrenewable Resources X X X X X
Partially-Renewable Resources X
Expediting Resources X
Resource Availability Measures:
Resource Factor X X X X
Resource Strength X X X X
Parameter(s) Randomly Drawn X X
Output:
Patterson Format X
ProGen Format X X X
PAGER Format X
MPS Format X

4-49

V. Single Project Scheduling

Overview

This chapter presents an algorithm for solving the Multi-Modal, Resource-Constrained Project
Scheduling Problem with Generalized Precedence and Expediting Resources (MRCPSP
GPR/EXP). The MRCPSP-GPR/EXP is the single-project, special case of the Multi-Modal,
Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and
Expediting Resources (MRCMPSP-GPR/EXP). While Chapter 111 highlighted the nature of the
multi-project MRCMPSP-GPR/EXP, the ahility to solve either single-project or multi-project
problems is entirely dependent on the availability of an algorithm for solving single-project
problems. More specifically, every instance of the MRCMPSP-GPR/EXP falls into one of the
following three categories:

1. The problemisatrue single-project MRCPSP-GPR/EXP. That is, an instance which
represents a real-world problem which is a single project.

2. The problem is a multi-project MRCMPSP-GPR/EXP which is treated and scheduled as a
single super project.

3. The problem is a subproblem of alarger multi-project instance of the MRCMPSP-
GPR/EXP. While amulti-project program may be scheduled as asuper project asin
Category 2 above, it may also be scheduled using the decomposition approach presented in
the next chapter. When scheduled using the decomposition approach, the decomposed
subproblems must still be solved - as single-project instances.

In any of the preceding categories, solution of the problem starts with the scheduling of a single
project.

With the goal of developing an appropriate solver for the singleproject MRCPSP-GPR/EXP,
this chapter begins with a discussion of solution approaches from the literature and how they relate
to this particular problem. Specifically, approaches used for related problems are reviewed for
their applicability to the MRCPSP-GPR/EXP, keeping in mind the unique characteristics of the
MRCPSP-GPR/EXP, aswdll asitsintended uses.

An approach for solving the MRCPSP-GPR/EXP is then presented, beginning with the
development of a basic algorithm and then adding on additional bounding rules designed to increase
the speed of the basic agorithm and, consequently, the size of problems which can be solved.
Testing of the algorithm is reported, followed by a chapter summary. To aidthe reader in

following the notation used in this chapter and other chapters, refer to Appendix A for a complete
listing of symbols, variables, and parameters.

Approachesfrom the Literature

The single-project MRCPSP-GPR/EXP shares many characteristics with other scheduling
problems discussed in the literature. Most obvious are the finishstart precedence relationships
between activities and the dependence of activity completion time and resource use on the activity
completion mode. Other characteristicsare less common— some of which preclude use of some of
the proven solution techniquesin the literature. The desire to use the solution algorithm in the
decomposition methodology presented in the next chapter also puts constraints on the approach
used to solve the MRCPSP-GPR/EXP. In light of these characteristics and constraints, solution
approaches from the literature have been evaluated for their applicability to the MRCPSP
GPR/EXP. The intent is to identify proven approaches which may form the basisof an approach
for the MRCPSP-GPR/EXP.

Implicit Enumeration by Branch-and-Bound. Among the approaches found in the literature for

solving project-scheduling problems, the most efficient are branch-and-bound enumeration
algorithms. These algorithms reducethe enumeration tree by searching amongactive schedules
only. These algorithms have been presented by Stinsonet al. (1978), Christofides (1987), and
Demeulemeester and Herroelen (1992) for the ResourceConstrained Project Scheduling Problem
(RCPSP); by Pattersonet al. (1989, 1990), Sprecher (1994), Sprecher and Drex| (1996a, 1998),
Sprecher et al. (1997), and Hartmann and Drex| (1998) for the Multi-Modal, Resource
Constrained Project Scheduling Problem (MRCPSP); by Demeulemeester and Herroelen (1997)
for the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem
(GMRCPSP); by De Reyck and Herroelen (1998a, 1998b) and Herroelenet al. (1998) for the
Multi-Modal, Resource-Constrained Project Scheduling Problem with Generalized Precedene
(MRCPSP-GPR); and by Van Hove (1998) for the Generalized, MulttModal, Resource
Constrained Multi-Project Scheduling Problem (GMRCMPSP). Understanding the efficiency of

these algorithms requires some discussion of active scheduling.

Consider, first, Definitions 5-1 through 5-8, provided by Sprecher et al. (1995).

5-2

Definition 5-1. Schedule (Sprecher et al., 1995: 97)

Consider a project withJ activities. Let 5 and my be the respective start time and execution
mode of activityj. A schedule, S = (s, m), isacomhbination of J-tuples, s=(s,,..., ;) and
m = (my, ..., my), which provide the start time and execution mode of each activityj, j = 1,

ey J.

Definition 5-2. Feasible Schedule (Sprecher et al., 1995: 97)

A schedule Siis called feasible if the precedence relations are maintained andthe resource

constraints are met.

Definition 5-3. Left Shift (Sprecher et al., 1995: 97)

A left shift of an activity j, j = 1, ..., J, isan operation on afeasible schedule S, which

derives afeasible schedule S, such that SJ ?s,and s:?s,fori,i=1,...,3,i?]j.

In words, left shifting an activity consists of moving the start time of an activity to an earlier

time without moving the start time of any other activity and while maintaining feasibility.

Definition 5-4. One-Period Left Shift (Sprecher et al., 1995: 97)

A left shift of an activity j, j = 1, ..., J, iscalled a one-period left shift if s; ? SJ ?1.

Definition 5-5. Local Left Shift (Sprecher et al., 1995: 97)

A local left shift of an activity j, j =1, ..., J, isaleft shift of activity j which is obtainable

by one or more successively applied oneperiod left shifts of activity j.

Sprecher (1994: 97) notes that within alocal left shift, each intermediate derived schedule has
to be feasible, by definition.

Definition 5-6. Global Left Shift (Sprecher et al., 1995: 97)

A global left shift of an activity j, j =1, ..., J, isaleft shift of activity j whichis not
obtainable by alocal left shift.

5-3

Definition 5-7. Semi-Active Schedule (Sprecheret al., 1995: 97)

A semi-active schedule is a feasible schedule where none of the activitieg, j =1, ..., J,
can be locally left shifted.

Definition 5-8. Active Schedule (Sprecheret al., 1995: 98)

An active schedule is a feasible schedule where none of the activitiesj, j =1, ..., J, can be
locally or globally left shifted.

The efficiency of algorithms which search over active schedules only hinges on the concept
that, under appropriate conditions, a project must have an active schedule which is optimal
(Sprecher, 1994). The necessary conditions for thisto be true are (1) theproject scheduleis
feasible and (2) the project schedule's objective function is aregular measure of performance. The
feasibility of the project schedule is an obvious condition. However, the regular measure of

performance condition requires further explanation.

Definition 5-9. Regular Measure of Performance

Consider a scheduling problem with the objective to minimize some measure of schedule
fitness, ? . Let S= (s, m) be afeasible schedule for the problem and let ? (s, m) represent
the fitness of scheduleS. ? isaregular measure of performanceif ? (s, m) <? (s, m)

impliesthat s; ? S} for at least onej, j =1, ..., J.

Definition 5-10. Non-Regular Measure of Performance

Consider a scheduling problem with the objective to minimize some measure of schedule

fitness, ? . ? ?sanon-regular measure of performanceif it is not aregular measure of

performance.

In smple terms, aregular measure of performance is one where a decrease in the objective
function value implies that at least one activity starts earlier in the improved schedule than it does
in the competing schedule. The objective of minimizing the project makespan (see Chapter 11,
Equation (10)) is an example of a regular measure of performance (Sprecher, 1994). Kolisch and

Padman (1998: 3) explain that a regular measure of performance is one where “ we can compare

5-4

two schedules for a given problem which differ only in the finish time of one activity and we can
state that the schedule which has the smaller finish time for this activity is at least as good as the
other schedule,i.e., the former dominates the latter.” Consequently, leftshifting the start time of
any activity never results in a worse objective value function.

The preceding discussion of active schedules and regular measures of performance is inportant
because of their positive impact on the execution time of so many approachesin the literature.
Unfortunately, the MRCPSP-GPR/EXP cannot exploit the concept of active schedules for two key
reasons.

First, the objective function of the MRCPSP-GPR/EXP (Chapter |11, Equation (20)) is anorn
regular measure of performance (Kolisch and Frase, 1996: 139). Thisisa consequence of the
availahility of expediting resources and the corresponding objective of minimizing project costs,
including the cost of expediting resources. Consider a project,P, with no expediting resources and
an objective function to minimize makespan. SinceP has an objective function which is aregular
measure of performance, it follows that P has an active schedule, S, which is optimal. By
definition, it isimpossible to left shift any activity in S, while maintaining precedence and resource
feasibility. Suppose, however, that there is some activityj which could be left shifted while
maintaining precedence feasibility, but which would result in a resource conflict. 1f expediting
resources (at no cost) were now made available which would permit the left shifting of activityj,
then the current schedule, S, is no longer an active schedule. Assuming that left shifting activity
alone would result in an active schedule {.e., addition of the expediting resources did not impact
the ability of other activities, including the terminal activity, to be left shifted), then the new
schedule, S, would have the same value as the previous schedule, S. However, if thereisa
positive cost associated with the expediting resources which madeS: feasible and the objective
function is expanded to include the cost of expediting resources, thenS' is, in fact, dominated by
S. Furthermore, since it was the addition of expediting resources alone that enabled activity) to
shift left to form active schedule S*, schedule S, a non-active schedule, remains optimal even for
the expanded objective function. Hence, the inclusion of expediting resources makes an objective
function a non-regular measure of performance and it is no longer sufficient to search only the
active schedules to find an optimal. This result is confirmed by Kolisch and Frase (1996: 139).

Second, the decomposition approach described in Chapter 111, for solving the multiproject
MRCMPSP-GRP/EXP, requires the generation of thek-best solutions of single-projects. Evenin

5-5

the absence of expediting resources (which would make the objective function a regular measure of
performance), it is still necessary to enumerate over the nonactive schedules. The reason liesin
the interdependence of the projects at the program level where projects are temporally relad and
must also compete for common renewable resources. Suppose that a project has two schedules
of equal value: S,, an active schedule, and S,, a non-active schedule. Thisis entirely possible
whether the objective function is aregular or nonregular measure of performance. If project P
must now adjudicate the start times of its activities and its resource requirements with other
projects at the programlevel, project P is indifferent to the two schedules,S; and S,, provided
there is no programlevel cost associated with the two schedules. However, it is possible that
schedule S, the non-active schedule, is feasible as to the program-level temporal relationships and
resource availahilities, while S,, the active schedule, isnot. Therefore, in the development of the
set of k-best solutions to the singleproject problem, all schedules, active and nonractive, must be
evaluated. Thisevaluation leads not only to the enumeration of possibly al of the optimal
solutions, but also to the enumeration ofequal-valued, suboptimal solutions.

It should be noted that Van Hove (1998) develops a similar decomposition approach for the
multi-project GMRCMPSP, but one where only active schedules are considered. Because the
GMRCMPSP does not include expediting resurces, its objective function is a regular measure of
performance. From the previous discussion, however, one might suspect that Van Hove's
subproblem solver would still need to enumerate noractive schedules. Enumerating non-active
schedules is unnecessary, though, because Van Hove assumes that projects are temporally
independent. Therefore, Van Hove enumerates thek-best active schedules of a project, all of which
are, by assumption, temporally and renewable-resource feasible at the program level. The question
that remainsin Van Hove' s approach is which of thek-best active schedules adjudicates best with
the other projects for nonrenewable resources. Van Hove demonstrates the utility of this approach
for the development of Air Tasking Orders (ATOs)in the wartime campaign planning process.

The approach, however, is inadequate for the nature of the MRCPSRGPR/EXP.

Having eliminated the active-schedule enumeration schemes, there are till two approaches to
evaluate for their applicability to the MRCPSP-GPR/EXP: zero-one programming and an implicit
enumeration scheme by Talbot (1982).

Zero-One Programming. Some of the earliest attempts to solve the RCPSP were based in

zero-one programming. These attempts differed not so much in the procedure used t@olve the

5-6

zero-one program, but in the way the zereone program was formulated (e.g., Bowman, 1959;
Pritsker et al., 1969). Chapter 111 presents a complete zereone formulation of the
MRCPSP-GPR/EXP using the variable definitions proposed by Pritsker et al. (1969). This

formulation can be solved directly, without modification, by any general zeraone program solver.

As discussed in Chapter |1, zero-one programming attempts at solving the resourceconstrained
project scheduling problems have generally ledto solution times which are orders of magnitude
greater than those required by specialized algorithms. This unfortunate reality is undoubtedly true
for the more general MRCPSP-GPR/EXP. Nonetheless, zero-one programming is till a valid
approach and advances in zero-one programming have improved the efficiency of zereone solvers.
One of these key advances is the concept of Special Ordered Sets (SOS) of Variables. As
described in Chapter 11, the exploitation of the SOS variables in the project schedulirg problems
significantly reduces the number of leaves in a search tree (corresponding to feasible solutions that
must be explicitly or implicitly evaluated) and improves solution time. Because of its applicability
to the MRCPSP-GPR/EXP, zero-one programming is a candidate approach to be computationally
compared to other applicable approaches.

Implicit Enumeration by Activity Sequence Talbot (1982) presents an implicit enumeration
scheme for the MRCPSP, where partial schedules in the enumeration scheme ae extended based
solely on a predetermined activity sequence, rather than on feasibility tests like the branchand-
bound methods. Though it lacks some of the elegance of the branckand-bound methods, its
simplicity provides a precise and straightforward way to assure that all schedules have been
enumerated (implicitly or explicitly). The approach also lends itself to being extended for
generalized precedence and expediting resources. Because of its flexibility to evolve for the
characteristics of the MRCPSP-GPR/EXP and its ability to enumerate all schedules, Talbot’s
algorithm provides the best starting point for developing an approach for the MRCPSRGPR/EXP.

Basic Algorithm

The basic algorithm for the MRCPSP-GPR/EXP, heresfter referred to simply as the
Scheduler, is an extension of the algorithm by Talbot (1982) for the MRCPSP. For the MRCPSF
GPR/EXP, the algorithm by Talbot must be extended to account for generalized precedence
constraints and expediting resources. Extension of the algorithm constituts this section. The next

section presents a number of bounding rules designed to improve the efficiency of the Scheduler.

5-7

These rules are presented separately, rather than being incorporated directly into the basic
algorithm, for two reasons. (1) Treatng the rules as options enables their contribution to solution
time, singly and in combination, to be more readily assessed. (2) If testing reveals that solution
times are negatively impacted by any bounding rule, the rule may be easily eliminated from the
solution agorithm. Note that bounding rules may improve the solution time of problems with
certain characteristics while increasing solution times for problems with other characteristics.

The Scheduler is a depth-irst implicit enumeration scheme which descends the branches of the
search tree to find feasible improving solutions. Each level, i, of the search tree represents a partial
schedule where onlyi activities have been scheduled. One activity is added to the schedule at each
level. Partia schedules are augmented until all activities are scheduled and a complete feasible
solutionisfound. Complete solutions are stored in ak x (J + 1) x 2 array, where k is the number
of best solutions desired, and J is the number of activitiesin the problem. For each activity, the
solution array stores two values: (1) its execution mode and (2) its start time. The objective
function value is stored in Row 0 of the array. The solution array isinitialized with appropriately
large values (e.g., 9999999).

When the algorithm finds a feasible solution, the objective function value of the solution is
compared to that of thek-th best solution in the solution array. If the objective function value of
the new solution is less than or equal to that of thek-th best solution, the new solution is added to
the solution array and the ranking of the new solution is determined. The solution in theék-th
position in the solution array is dropped from the array.

While solutions are added to the array of k-best solutions, a counter isincremented to record
the number of solutions which have become part of the array. In the event that there are fewer than
k feasible solutions, the value of k is reset to the count of feasible solutions. This assures that only
feasible solutions are reported.

Using a depthfirst search allows the solution array to be filled with k solutions as quickly as
possible. These k solutions replace the artificially large values with which the solution array is
initialized. Since branches of the search tree may be fathomed if any feasible solution on that
branch is dominated by the current k-th best solution, having the solution array filled with good
solutions provides a tighter upper bound which allows earlier fathoming of branches.

When scheduling aproject, a scheduler may wish to present a decisonmaker with a set of
feasible schedules rather than a single optimal schedule generally returned by most approaches.

5-8

While a scheduling purist may always look for an optimal solution, decision-makers may prefer an

alternate-optimal solution, or even amathematically sub-optimal solution, for subjective or non

guantifiable reasons. The methodology used here for findingk-best schedules for a project

provides decision makers such options. The methodology &so provides the sets of solutions

required by the decomposition algorithm developed in the next chapter (see Chapter VI).

The agorithm has two phases: an initialization phase and a search phase. Before the algorithm

is presented, the key assumptions areoutlined.

Assumptions.

1. Activity modes are numbered in order of increasing duration.

2. Only time-constant and timeincreasing mode costs (cash flows) are considered.

3. All costs are nor-negative.

4. Renewable resource availability need not be constant, but availabilities beyond the project

6.

horizon, D, are such that schedules completing beyond the project horizon are dominated
by the set of k-best solutions. Thiswould be true, for example, if the availability of
resources were zero for periodsD+1, D+2, and so on Inthis case, only schedules
completed by D would be feasible. This assumption is stated in such away that the usual
assumption of constant resource availability can be relaxed, while at the same time
assuring the problem remains bounded and optimality can be assured. The Program
Attributes Generator with Expediting Resources (PAGER) described in Chapter 1V, as
well as most other problem generators, uses the sum of activity durations, with each
activity in its longest-duration mode, as the project horzon. Thisis certainly a convenient
upper bound on the project makespan. The project manager may, however, choose any
arbitrary value as the project horizon, provided there exists at least one precedence and
resource-feasible schedule that can be completed by the chosen horizon.

During the Initialization Phase when the early- and late-start times of each activity are
calculated, the activities are scheduled using their shortest duration mode. 1f a mode of
longer duration were used, the early start of siccessor activities would be greater than
otherwise possible and the late start time of predecessor activities would be less than
otherwise possible.

Activities of zero duration (including, but not limited to, thedummy start and end activities
of aproject) may be included in the project. They may represent cash flows not associated

59

with a specific activity, milestones within a project, or dummy project source/sink nodes

within a multi-project program.

Initialization Phase. During the initialization phase, the problem (with the resource constraints
relaxed) is solved using a CPM-type labeling routine. The Generalized Critical Path Method
(GCPM), detailed in Chapter IV, calculates the early and late start times of the activities based on

their generalized precedence relationships. With early start times determined, the order that
activities are added to the schedule isfixed, early start timefirst (in the case of ties, low activity
number first). Fixing the order in which activities are added to the schedule is a departure from
algorithms which gain their efficiency by enumerating only the active schedules. These active
schedule algorithms are proven to converge because they enumerate thective schedules of
permutations of activities. In scheduling the MRCPSP-GPR/EXP, though, all schedules must be
enumerated (implicitly or explicitly), so there is no computational advantage to permutating
activities. The advantage, however, of adding activities in numerical order isamore

straightforward implementation of the search scheme.

Search Phase. During the enumeration of the search tree, the algorithm descends from one
level to the next, adding activitiesto the previous partial schedule. Activities are scheduled to start
only at times and in modes which are feasible to the generalized precedence and resource
constraints. When a leaf of the search tree is reached, the newly found schedule is added to the set
of k-best solutionsiif its objective function value is as good as the objective function value of tle
current k-th best solution and discarded otherwise. The algorithm, then,backtracks, first to
unexplored start times of the current activity and mode assignment, then to unexplored modes of
the current activity. When all modes and start times of the adivity at the current level have been
exhausted, the algorithm backtracks to the previous activity to continue the enumeration of its

modes and start times. When the algorithm tries to backtrack from the source node, it terminates.

The agorithm and assodated notation are outlined below. Without loss of generality, assume
activities are numbered in the order in which they are scheduled so that activityi is added at level i

of thetree.

5-10

Notation for Search Algorithm

Activity Indexes:
[= the activity added at level i of the search tree

m = the currently scheduled mode of activityi

S = the currently scheduled start time of activityi
Activity Sets:

O = theset of activities which precede activityi

Ni = theset of activities which have a direct start-start lag relationship with activity i

N, = theset of activities which have a direct or indirect lag relationship with activityi
Resource Sets:

QR = the set of al renewable resources

Q" = the set of al nonrenewable resources

Time-Related Parameters:

F = the early program completion time

G = theprogram completion due date

D = theprogram planning horizon, ordrop dead date (F <G <D)
e = the early start time of activity i

li = thelate start time of activity i

W = [e, li], the start time window of activityi

dim = theduration of activity i in modem

?’};m = the minimal start-start lag time between activitiesi and j

r>max
H I]

the maximal start-start lag time between activitiesi and

Resour ce-Related Parameters:

R

mq = theunitsof renewable resourceq required by activity i in modem

5-11

= the units of renewable resource g remaining at timet at level i

>y
:9' P
|

T
'
|

= the units of expediting, renewable resourceq remaining at timet at level i

r; = the units of nonrenewable resourceq required by activity i in modem
R'fq = units of nonrenewable resourceq remaining at level i

Hi'fq = the units of expediting, nonrenewable resourceq remaining at level i

Cost Parameters:

c,mg = the cost incurred by scheduling activity i in modem at start time s at level i (for

terminal activity J, thisis the completion penalty)

c,f*n3 = the cost of expediting, renewable resources incurred by scheduling activityi in mode
m at start times at level i

c,',“n = the cost of expediting, nonrenewable resources incurred by scheduling activityi in
modem at level i

C, = thetota partial schedule cost after leveli

C{¥ = thetotal complete schedule cost of the (currentkth-best schedule

Basic MRCPSP-GPR/EXP Project Scheduler

Sep 0 Initialization (Start Time Labeling). Run Generalized Critical Path Method (GCPM)
Algorithm detailed in Chapter IV to calculate activity start time windows.

Sepl Leti =1. Assign activity 1 (the source node) its single mode,my = 1, and early start

time, s, = €.
Sep 2 Leti:=i+ 1 and assign the next activity in order (activity i) its first mode, m = 1.

Sep 3 Nonrenewable Resource Feasibility. Determine if m is feasible to the nonrenewable
resource constraints (.e., the sum of regular and expediting nonrenewable resources is

sufficient for activity i’s nonrenewable resource demand). That is, if

5-12

Sep 4

Sep 5

fma ? Rong 2 Hi51q: 292 Q" , thenm is nonrenewable-resource feasible. If not

feasible, go to Step 12.
Assign activity i itsearly Start time, s = €.

Minimum Sart Time Feasibility. Determine if activity i’s current start time is feasible
to the precedence and startstart minimal lag constraints. Depending on the duration

d,., , of activity i and the duration, d of its predecessor activity j, the following

im 1 jmj]

conditions must hold for minimum start time feasibility. If infeasible, go to Step 11.

Ay 20 Ay 20

5?5, 2d,,.,2j20 5?5 2d,, 21?2?20,

m; s ?s,?2?2%",?j?C,,j?i s ?s, 227" ?L?j?C,,j?i

s ?s;?L?]?0, s ?s;,?]?0

im; 5?5, 220" ?L2j?C,j?i s ?s,?2?2%",?2j?C,,j?i

Sep 6

Maximum Start Time Feasibility. Determine if activity i’s current start time is feasible
to the start-start maximal lag and project horizon constraints. Depending on the
duration of activity i and its predecessor, the following conditions must be tue for

maximum start time feasible. If not feasible, go to Step 12.

5-13

Ay 20

Ay 20

?0

§ 7?5 ??77,2]?2C,,j?i

5 ?D?d, ?1

§7?s 27T ?1,2j?2C,] ?i

s ?D

?0

§7s 2?7 ?1,2j?C,,j?i

5 ?D?d, ?1

§ 7?5 ??7,2j2C,,j?i

s ?D

Sep 7

Sep 8

Renewable Resource Feasibility. Determine if activity i’ s current mode and start time

are feasible to the renewable resource constraints §.e., the sum of regular and

expediting renewable resources in each period over which activityi extends is sufficient

for activity i’ s renewable resource demand). That is, if

fma ? Rang 2 Hisg: 20?2 QF,§ 2t 2§ ?2d,, , then activity i’s current mode and

start time are renewable-resource feasible. If not feasible, go to Step 11.

Adjust Resources and Costs. The new partial schedule formed by adding activityi in

modem at start time s is feasible and may lead to an improved solution. Adjust

resource availabilities and the schedule cost as follows:

»n R 98R°1q : ”T\q if rlmq R"l(h? 7q7Q
:; Oif rImq : Rolqg
oif rIm

7

R
R 92R?l,qt ‘ |mqt if rlmqt
3 Oif rlmqt ‘ vaqta

|’7lq ! R')lq !

va at

5-14

! Rolq')”q”Q
mm'f rlmq ! R”lqa

9’?q’?Q S7t737d

3 oif r? ?RR 3

? HR?% mat R?l'q"b,?q?QR,s?t?s?d-
O gHR ?RE 2R if R ?RY 3 '

Y li?Lqt ?Lqt im gt im,qt ?Lqt %

N M R
7? Ci ?Ci?l?clm ?Cm\s ?Cm\s

Sep 9 If activity i isNOT the terminal sink node, go to Step 2. Otherwise {.e., activity i is
the terminal node), if this schedule is as good as the currentk-th best solution, add this

complete schedule to the set ofk-best solutions.

Sep 10 Adjust Resources and Costs. Remove activity i in modem at start time s from the

current complete schedule Adjust resource availabilities and the schedule cost.

Sep 11 Backirack by Sart Time. Assign activity | start times =5 + 1. If start time, s, isless
than or equal to the late start time of activityi (S ?|,), go to Step 5.

Sep 12 Backirack by Mode. Assign activity i modem :=m + 1. If mode, m, islessthan or

equal to the maximum number of modes of activityi, go to Step 3.
Sep 13 Backtrack by Activity. Backtrack to activityi :=i—1. If i 270, goto Step 11.

Sep 14 Stop. Algorithmcomplete and k-best solutions found.

In the mathematical formulation of precedence relationships (Chapter 111, Equations (2)
through (7)), it is generally assumed that both activities in a precedence relationship hawe non-zero
duration. Note, however, that the conditionsin Steps 5 and 6 contain cases where one or both
activities in a precedence relationship have zero duration. As discussed in Chapter IV (see Figure
4-11 and accompanying text), the rules for activities with zero duration are somewhat different
than for those with nonzero duration. Steps 5 and 6 implement these alternate rules.

Since a cost isincurred only for the use of expediting resources, regular and expediting
resource availabilities must be accounted for separately. This accounting is donein Steps 8 and 10
where resource availabilities are adjusted. When adding an activity to a partial schedule in Step 8,
one of two casesistrue: 1) the demand by the activity for a particular resource is ro greater than

the current regular availability of that resource or 2) the demand for the resourceis greater than

5-15

the current regular availability of that resource. If the demand is no greater than the current
regular availability, then the regular avail ability alone is decremented. |f, on the other hand, the
demand exceeds current regular availability, then al of the regular availability is used first and
then expediting resources are used to meet the balance of the resource demand. Conversdly, in
Step 10 where activities are removed from the partial schedules, the freed resources are used first
to backfill the expediting pool of resources and then the regular pool.

With the Basic MRCPSP-GPR/EXP Project Scheduler outlined, attention is now turned to the

convergence of the algorithm, in Theorem 5.1.

Theorem5-1. Optimality of the Basic MRCPSP-GPR/EXP Project Scheduler

Theorem: If Pisafeasible MRCPSP-GPR/EXP, the best solution found by the
MRCPSP-GPR/EXP Project Scheduler is an optimal solution for P.

Proof: Let P be afeasble MRCPSP-GPR/EXP with objective function ? .

Define a schedule of P to be a precedence and resourcefeasible assignment
of amode and start time to each activity inP, aong with the accompanying

expediting resources required to make that assignment feasible.

Let S be an optimal schedule for P with objective function value ? 'S".

Must show that the Basic MRCPSP-GPR/EXP Project Scheduler finds a
schedule S° with ? 'S%:? 2 S".

Let A be an explicit enumeration of al possible schedules of P, where each
activity i in P may be performed in any of its respective modes, m, and may
dtart at any time in the interval 'EL’? % Then, A contains all schedules of P

and, consequently, ? aschedule S°? A suchthat ? 'S7:?? 'S’.

Now show that the Basic MRCPSP-GPR/EXP Project Scheduler eliminates

all schedules, S in A, where ? S22 S”, but does not eliminate S-.

5-16

Enumeration Control. Most of the steps of the Basc MRCPSR-GPR/EXP

Project Scheduler control the incrementing and backtracking of the algorithm.
A few additional steps limit the activity start time windows (Steps 5 and 6)
and provide basic resource feasihility tests (Steps 3 and 7). In the absence of
Steps 3, 5, 6, and 7, the algorithm would explicitly enumerate every mode
assignment of each activity, as well as every possible start time for each
activity fromt =1to ? . Must show, then, that the start time limitations and
feasibility tests do not eliminate solutions which would dominate all other

solutions.

Reduction of Project Horizon Initsinitialization phase, the Basic MRCPSP-
GPR/EXP Project Scheduler eliminates all schedules which complete after the

project horizon,D. By design, the project horizon and renewable resource
availabilities are defined in such away that ? a schedule which completes by
D without the need for expediting resources. In PAGER, as with most other
problem generators, D is defined as the sum of al activity durations, with
each activity in its longest-duration mode. Regular renewable resource
availabilities are, then, generated sufficiently high so that the above condition
isawaystrue. If resource availabilities are given and not generated, thenD
must be chosen such that: (1) D is no less than the sum of all activity
durations, with each activity in its longest-duration mode, and (2) the above
regular renewable resource condition holds. Assume, for the moment, that

resource availability is constant. This assumption isrelaxed later.

Let S7be aschedule for P, such that some activity, i7, completes after time
D. By theway D is defined, scheduling activities back-to-back (regardless of
order) at most spansD. Consequently, scheduling activity i7 to complete

after D implies that schedule S7 creates some timeinterval ,,t,%, with

t, ? D, when no activity isin process. Because resource availability is
assumed to be constant, all activities which are scheduled to start aftert, can
be shifted t, ?t, ?1 time unitsto the left, while maintaining their relative

temporal relations and without increasing expediting resource costs. (If there

5-17

are other such time intervals remaining, they may be eliminated in the same

way.)

Now, every activity in the revised schedule, S, , completes by timeD. Since
activity costs are non-decreasing in time and since activity iz starts earlier in
schedule S",’D than it did in schedule S7, the cost of activity i7 under schedule
S?, isno greater than its cost under scheduleS?. The same holds true for any
other activity shifted to create St:heduIeS",’D . Therefore, the cost of the revised
schedule, S, is no greater than that of schedule S7, ? rS’,’D 22 %%, This
impliesthat, for every schedule, S7, which completes after D, ? a schedule,

S?,, which completes by D which has objective function value less than or

equal to S7. Therefore, if all schedules which complete after D are

eliminated, there yet remains an optimal schedule for P.

The assumption of constant resource availabilities may, now, be relaxed with
the assumption that times beyondD are either infeasible (e.g., zero resource

availability), dominated, or of no practical interest to the Program Managgr.

Reduction of Early/Late Activity Start Times The initialization phase also

calculates early and late start time windows, with the assumption that no
activity starts before time 1 or completes after timeD. The proof for the
GCPM, in Chapter 1V, shows that no activity may start before its calculated
early start time or after itslate start time without violating generalized
precedence constraints or pushing some other activity outside the assumed
start or completion bounds of the project. Hence, elminating activity start
times outside their respective early/late start times (Steps 5 and 6) eliminates
only infeasible assignments and, therefore, cannot eliminate an optimal

solution.

Resource Feasibility Tests. Steps 3 and 7 perform tests to check ifadding an

activity (in agiven mode and start time) to the current partial schedule creates

aresource conflict. 1f so, the next mode and start time assignment are

5-18

checked. Again, these steps eliminate only infeasible activity assgnments and

cannot, therefore, eliminate an optimal solution.

Optimality Test. Step 9 is executed only when a complete (and feasible)
schedule, S, has been constructed. A comparison betweenS and the

currently best schedule, S, ismade. If ? 5127 S/, then S is eliminated.

Otherwise, S becomes the current best solution, S:=S . When al schedules
have been enunerated and tested, let the remaining best solution be relabeled
S

It has been shown that the Basic MRCPSP-GPR/EXP Project Scheduler
explicitly enumerates all schedules of P within the bounds of the project
horizon, D. It has also been shown that limiting the search for schedules that
complete by D does not eliminate any schedule which dominates all other
schedules. Therefore, the Basic MRCPSRP-GPR/EXP Project Scheduler has
been shown to dliminate all schedules, S in A, where 2 S22 %S%. Since no
other schedules remain untested, S” is an optimal solution, where

28?22 S,

Bounding Rules

Recall that, in the Scheduler, activities are scheduled to start only at times and in modes which
are feasible to the generalized precedence and resource congtraints. 1n addition to the basic
algorithm’ s rudimentary feasibility tests, more advanced feasibility and goodness tests (based on
objective function value) may be applied to eliminate partial schedules which lead to infeasible
complete schedules or schedules dominated by the currentk-th best schedule. By applying better
feasibility tests and by checking schedule goodness at each level of the tree rather than only at the
leaves where complete schedules are found, unproductive branches of the tree may be fathomed
sooner, thereby reducing the portion of the tree explicitly enumerated. The efficiency of the
algorithm may be improved based on the degree to which feasibility andbounding rules prune the

search tree. This section provides a number of these rules.

5-19

Bounding Rule ZDS (Zero-Duration Activity Start). A zero-duration activity may have a cost

as well as nonrenewable resource demands associated with it. 1t does not, havever, have any
associated renewable resource demands. With the assumption that all mode costs are time constant
or time increasing, there is no benefit to delaying a zereduration activity, either to reduce its cost
or to make it renewable resource feashle. Therefore, the algorithm does not enumerate any but the
earliest feasible start time of a zero-duration activity. Backtracking, consequently, proceeds to
enumerating any unenumerated modes of the zereduration activity or backtracking to a previous

activity (i.e., level) in the precedence tree.

Bounding Rule ZDS may replace Step 11 which becomes:
Backtrack by Start Time. If the duration of activityi is zero, go to Step 12. Otherwise, assign

activity i start times =5 + 1. If start time, s, islessthan or equal to the late start time of

activity i (s ?1.), goto Step 5.

Feashility Rule NRF (Nonrenewable Resource Feasibility). Step 3 checksiif there is sufficient

remaining nonrenewable resources available to schedule activity i in modem. A stronger bound
on the feasibility of the current mode selection, however, isto verify that the remaining available
nonrenewable resources are at least as great as the demand, not only of the current activity in its
selected mode, but dso the demand of all remaining unscheduled activities in their lowest demand
modes aswell. That is,

J
N2 2 min?N PRY 2HY, 292 QY.

imq
j?i?1 M

Sprecher and Drex| (1996a: 19) show that this bounding rule can be easily implemented as a

preprocessing step. For each nonrenavable resource, g, the modes of each activity, i, are

compared to find the minimum possible usage of resourceq by activity i:

r
|| ¢ N H—-—
rming, ’?ml“l;\i?rim. fori=1,...,J

Then, the input data is adjusted by reducing the requirement for resourceq by each mode of
activity i by the minimum possible usage of resourceq by activity i:

=N N s N H—-—

Fig 2 g 2Ming fori=1,...,3, m? M, q? Q"
Finaly, the input data is adjusted by reducing the availability of resource q by the sum of the

activities minimum possible requirements:

5-20

J
R ?R ?7? rming for g? Q"
i?71

Therefore, bounding rule NRF is applied as Step Oa and is added between StepsO and 1. Step 3 is
applied as normal.

Bounding Rule NEC (Nonrenewable Expaliting Resource Cost). It is possible, at any level of

the search tree, for an activity to be scheduled which is feasible as to the availahility of
nonrenewable resources but which cannot lead to an improved schedule. Assume activityi is being
added tothei-1 partial schedule in modem and that Step 3 has determined the addition of activity
i to be nonrenewable resource feasible. It is possible, however, that nonrenewable resource
feasibility can be achieved only at the cost of some quantity of expedting resources. If the cost of
those expediting resources plus therunning cost of thei-1 partial schedule exceeds the cost of the
current k-th best solution, then the addition of activityi in modem cannot lead to an improved
schedule. Activityi in modem is, therefore, rejected as an improving addition to tha-1 partial
schedule and its corresponding branch fathomed.

This bounding rule is further strengthened when applied in conjunction with Bounding Rule
NRF. If the cost of expediting resourcesresulting not only from the addition of activityi in mode
m but also from the addition of the remaining unscheduled activities in their least demanding
modes is considered, fathoming of unimproving branches can occur higher in the tree and the total
search time is reduced.

Bounding Rule NEC, then, can be applied as Step 3a between Steps 3 and 4 and can be
expressed as follows:

limk
KoKN ; j2i21 ™M

3 J 3
If Cpn? ? ¢ ’?maxgo fve ? 7 min?rj',“rk?? Rf‘kg?cgk), add activity i in modem.

Otherwise, go to Step 12 {.e., fathom the current branch).

Feashility Rule EST (Early Start Time). The basic algorithm enumerates over the entire

GCPM start time window for each activity, relying on Step 5 to determine the generalized
precedence feasibility of each start time. In any branch of the search tree, however, the erliest

feasible start time of an activity may be explicitly determined based on the completion time of

5-21

generalized predecessor activities which have already been scheduled. Consequently, Steps 4 and 5
may be replaced by Bounding Rule EST (call it Step 4/5) as follows:

Assign activity i the maximum of its early start time, the latest completion time of all its

predecessors, and its earliest start-start minimum lag feasible time. That is,

? 02 ?
? 2 - i '
HMax e, max?sj ’?djm_?, max?sj ’?1?, max?sj ’?’?’}}'”?, max ?sj ??’}}'” ’?1?7 if diy, 70
[j?0, i i? i?7C i7C
? 3 (Jj-m. 20 (Jj-mQ?o é‘n??o djm; 20 3
S 25 ? Imj Imj Im; Im; ?
C 2 2
’) H H
! o) ' ' .
?max e, max?s ?2d;, ’?1? max?sj 9 max?sj ??’}}'” ’?1?, max?sj ??';}m?é if di, ?0
? el , j?0, ?C j°C
2 3 djm; 20 djm; 20 djrr?j'?o djrr?jl?O 3

Since al subsequently enumerated start times for any activity are minimal start time

feasible, the direction given in Step 12 to go to Step 5 may be changed to redirect to Step 6.

Feasbility Rule MD (Mode Duration). Step 6 determines if the current start time of an

activity is feasible to the maximal lags of its generalized predecessors. It also verifies that the
current start time plus duration of the activity does not exceed the project due date. Feasibility
Rule MD goes further to assure that if activity i is scheduled in modem at start time s, the earliest
possible finish time of the remaining unscheduled activities (in their shortestduration modes) does
also not exceed the project due date. If any do, the current start time and later start times are
infeasible and those branches of the tree are fathomed.

Feasibility Rule MD checks if any critical path emanating from activity i resultsin any activity
finishing after the project due date. If so, not only can the current and future start times of activity
i in modem be fathomed, but the late start time of activity i can be reduced tol; = s — 1 for any
modes of equal or greater duration.

To determine the critical paths emanating from activityi, the GCPM isfirst run to determine
the early start time of each activity. Recall that GCPM is run with the shortest-duration mode of
each activity. The (shortestmode) duration of activityi is, then, artificially increased by one and
temporarily fixed. The GCPM isrun again. Those activities whose start times have been delayed
asaresult of activity i’s duration being increased are on amode critical path from activity i (i.e.,
activity i has no free dack). It followsthat any of these mode critical path activities are also

delayed if activity i’s start isdelayed. To simplify the rule, however, recall that no activity can

5-22

finish later than the terminal dummy activity, J. Therefore, it is sufficient to consider whether or
not activity J ison a mode critical path from activity i.

Bounding Rule MD, then, may be incorporated as Step 6a asfollows:

Mode Duration Feasibility. Let thedelay, ? , resulting from activity i being scheduled in
modem at start time s be defined as the difference betweens and activity i’s early start time, g,
plus the difference between the duration of activity i in modem and its shortest-duration mode.

?22% ?2¢%2d, 2d,"
In other words, any activity on activityi’s mode critical paths is delayed both by activity i starting
later than its early start time and by activity i being scheduled in a mode longer than its shortest
duration mode. Therefore, activityi cannot be scheduled in modem at start time s if (1) activity J
ison activity i’s mode critical path and (2) the early start time of activity J plus ? exceeds the
project horizonD,

e, ??27?D.

Bounding Rule MC (Mode Cost) If the cost of scheduling activityi in modem at start time s

plus the running cost of thei-1 partial schedule exceeds the currentk-th best solution, then start
times and any later start time for activity i in modem leadsto a dominated solution and can be
fathomed. If, in addition, the lowest mode costs of the remaining unscheduled activities are also

added, an even stronger bound can be achieved.

Recall that an activity’s mode cost is not only a function of its mode, but also of its start time.
Therefore, in afashion similar to that for Bounding Rule MD, the GCPM isrun to determine the
early start time of each activity. The early time of activity i is, then, artificially increased by one
time unit and temporarily fixed. The GCPM isrun again. Those activities whose start times have
been delayed as aresult of activity i’s start time being delayed are on astart time critical path
from activity i. These activities, though, are not necessarily on a mode critical path from activityi.

Therefore, Bounding Rule MC may be added as Step 6b as follows:
Define ? M asthe set of activities on amode critical path from activityi. Define ? © asthe

set of activities on a start time critical path from activity i. Then, each unscheduled activity, j,

isinset 2, set 2%, or neither set. If activity] isin neither set, ? an activity i, 7 such that

j? 2% or 22 7,, evenif that activity is the dummy source activity.

5-23

Then, let ?M 2 ?2¢%?°d, ?2d,," bethe delay for activitiesinset ? M. Let 25?5 ?¢"
be the delay for activitiesin set ? °. Define corresponding delays for activities in sets ? i“j’L

S
and ? 5.

Now, compute the running cost of tha-1 partial schedule plus the cost of scheduling activity i
inmodem at start time s plus the mode cost of the unscheduled activities in their minimum
cost mode and earliest feasible start time. If that cost is no greater than the currentk-th best
solution, retain activity i in modem at start times. Mathematically, if

"
? mlnoc ! pr’? ’) mlnoc s m2CcP
I/ I
J"I"l nf’M 9 99 . J"I"l 9 jm e??jl? 9

J')') J')?S

then retain the current start time. Otherwise, go to Step 12.

Bounding Rule REC (Renewable Expediting Resource Cost) Asisthe case with

nonrenewable resaurces, the addition of activityi in modem at start times may be renewable
resource feasible but lead to a dominated solution. Thisisthe case when other running costs plus
the cost of renewable expediting resources required for feasibility exceedshe value of the current

k-th best solution. Thus, a check for dominance may be added as Step 7a asfollows: If

Cn? ? ’)max?)rR

limk N RF,th ?? Cgk) ,
k’7KR t?s
then the current partial schedule may lead to an improved solution. If not, go to Step 11.

If used in conjunction with Bounding Rules NEC so that the cost of nonrenewable expediting
resources and renewable expediting resources are considered, fathoming occurs even earlier. The

resulting equivalent fathoming condition would be:

5-24

S dlm

3
Cn? ? o Mmax20,ry, ? ’) mm?’N 7’?Rk7’? ? 2 max?),r,ff]k
’ mM;
k?KN 8 j?i71 7 k’7KR 125

2 RRkt 79 C(k)

Feasibility Rule MOD (Infeasible Modes). Feasihility Rule MOD tests each mode of each

activity to determine if it is feasible as to the renewable and nonrenewable resource congtraints. A
mode, m, of activity i is infeasible vis-a-vis a nonrenewable resource, qN, if the usage of qN by m
plus the minimal usage of g by all other activities exceeds the availability (regular plus
expediting) of g". A mode, m, of activity i is infeasible vis-&-vis a renewable resource, ¥, if the
usage of g~ by m exceeds the availability (regular plus expediting) of g7 in the time period where
the availability of g is greatest. Note that when comparing renewable resource usage against
availability, the time period when that resource is most available must be determined. Thisis

required because of the assumption of nonconstant resource availability.

Feasibility Rule MOD is performed at the beginning of the search phase to eliminate infeasible
modes as soon as possible. The rule isinserted into the algorithm as Step Ob as follows: For eah

mode, m;, of each activity, i, if

N N9 N
,mq')’)mMn’r R 2H!
j2i

for any nonrenewable resource, qN, or if

r
R 5 R~ RY
limq t()r%aéo q 7 Hy!

for any renewable resource, qR, then mode, m, of activity i isinfeasible and eliminated from further

consideration.

Testing

Extensive testing was conducted to address a number of issues about the MRCPSPGPR/EXP
Scheduler. These include, but are not limited to, an investigation into the computational
contribution of the optional bounding rules and a comparison of the algorithm verss a general
integer programming solution approach. Each issue is addressed separately below.

For al testing, problem instances were generated using PAGER and solved using a 750 MHz,
Pentium 111 processor with 256 MB of Random Access Memory (RAM). A btal of 4992

problems were generated, most of which were solved in a variety of waysi(.e., using different

5-25

combinations of bounding rules and / or alternate values ofk). The total number of tests conducted
is52,521.
Note that in some of the charts belav, the termjob is used in place of activity. The two terms

are intended to be equivalent andjob is used simply to conserve space.

Test Problem Parameters Held Constant A review of Chapter IV reveals an extensive list of

parameters that can be set in PAGER to generate tailormade problem instances. Some parameters,
such as the minimum and maximum number of start or end nodes, can be atered toshape the
underlying project network. In this particular case, the parameters are set to give the most
flexibility to PAGER, with the minimums being set to one and the maximums set to the number of
activitiesin the project. Thisis required to assure that the network Restrictiveness parameter
controls the network structure. For example, a Restrictiveness of ondeads to an end-to-end string
of activities, requiring the minimum number of start and end nodes to be one. On the other hand, a
Restrictiveness of zero produces a network where there are not temporal relationships at all
between the activities. This reguires that the maximum number of start and end nodes be at least

as great as the number of activities.

Other parameters are held constant to manage the size of the experimental design. Varying
some of these parameters might produce interesting excursiongo this study. The parameters held
constant throughout testing include:

?? Lower and Upper Bounds on Activity Lags. When a generalized precedence exists
between two activities, say activitiesi and |, then the difference between the start times of
activitiesi and j must be no less than their minimal lag and no greater than their maximal
lag. Minimal lags were randomly drawn from between—2 and +2 and maximal lags from
between +4 and +8. For instance, suppose the minimal lag is randomly chosen to be-1
and the maximal lag is randomly chosen to be +6. Thisimpliesthat activity j may start as
early as one time period before the start of activityi or as late as 6 time periods after the
start of activity i. The choice of intervals [-2, +2] and [+4, +8] for randomly drawing
minimal and maximal lags, respectively, was arbitrary. These values were chosen simply
to give some variety to the generalized precedences, while allowing for the possibility of
concurrent activity start times.

?? Resource Demands: The number of units of a particular resource that an activity may
require was randomly drawn from between 1 and 10.

?? Project Penalty Cost: If aproject isdue at timet, then a project completion penalty is
assessed starting at timet+1. The penalty to be assessed at timet+1 was randomly drawn
from between 500 and 750 units. For each period beyond timei+1, the penalty assessed is
increased by some increment, randomly drawn from between 400 and 500 units. Again,
this was a matter of preference.

5-26

?? Mode Costs: Each scheduled activity is assessed a cost which is a function of the mode
and start time. When activity modes are generated, each is assigned a baseline cost
randomly drawn from between 50 and 100 units. A mode's baseline cost is assessed if the
activity is scheduled in that particular mode at the activity’s early start time. If the activity
is scheduled later than at its early start time, the mode’ s baseline cost plus atime
dependent incremental cost is assessed. The incremental cost associated with anode was
also randomly drawn from between 50 and 100 units.

?? Expediting Resource Costs: If an expediting resource, either renewable or nonrenewable,
is used, an expediting resource cost is assessed. Each expediting resource is assigned a
cost randomly drawn from between 0 and 50 units.

Table 5-1 summarizes the problem parameters held constant throughout testing.

Table 5-1. Problem Generation Parameters Held Constant

Min Max
Minimal Lag -2 2
Maxima Lag 4 8
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty I ncrement 400 500
Base Mode Cost 50 100
Mode Cost I ncrement 50 100
Bxpediting Resource Cost 0 50

Test Problem Parameters Which Are Varied A number of key parameters used to generate

test problems were varied throughout the testing. Some of these are parameters identified by other
researchers (e.g., Kolisch et al., 1995; Schwindt, 1996; Van Hove, 1998) as having the greatest
effect on problem difficulty. Others are key features of MRCPSP-GPR/EXP that may impact
problem difficulty. These parameters are outlined in Table 5-2. Table 5-2 does not list the values
that these parameters might take. The parameter values are, instead, introduced when each

experiment is described below.

Thetest designsthat are introduced in this section are referred to as thefull, reduced, and
minimal designs. The adjectives describing the designs are used simply to reflect their relative

scopes and to provide a convenient means of referring to them.

5-27

Table 5-2. Parameters Which Are Varied

PARAMETER
Number of Modes Per Activity
Job Duration, Maximum
Lag Fraction
Project Network Restrictiveness
Number of Renewable/Nonrenewable Resources
Renewable/Nonrenewable Resource Factor
Regular Renewable/Nonrenewable Resource Strength
Total Renewable/Nonrenewable Resource Strength

Computational Contribution of Bounding Rules The first experiment conducted was designed

to assess the contribution each of the eight optional bounding rules makes to solution time. Since
each rule reduces the algorithmic search smace, each should, theoretically, improve overall problem
solution time. However, there is computational overhead associated with each rule. Therefore, an

experiment to determine if there is a practical contribution by the rulesis essential.

Table 5-3. Reduced Test Design

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 @ 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 050 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 050 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00 050 1.00
Total Renewable/Nonrenewable Resource Strength 1.00
Total Combinations = 288

The experiment was conducted by generating 1440 projects with five activities each using the
reduced test designin Table 53. Thereduced design contains 288 design points. Five projects
were generated for each design point.

The projects were scheduled using the basic algorithm and, then, using each individual
bounding rule. The results, shown in Table 54, list the rule(s) applied, the solution times, and the
improvement in solution time offered by each rule (as a percentage of the solutiortime without
rules). Figure 5-1 shows the results graphically. Rule MC showed the greatest singlerule

improvement, solving problems (on average) in 0.002 of the time required by the basic solution.

5-28

On the other hand, Rules MD, MOD, and NRF were only sightly better than solving with no rules
a all. When all the rules are combined, the solution algorithm solved the problem set in 0.001 of

the basic case solution time.

Table5-4. Rulevs. Average Solution Time (seconds) for 5 Activities

Solution Time (seconds) Ave Time as
Rule Min Average Max Std Dev % of "None"
None 0 5.808 170.7 17.407 100.0%
MD 0.000 5.545 166.530 16.557 95.5%
MOD 0.000 5.493 166.110 16.452 94.6%
NRF 0.000 5.485 166.220 16.466 94.4%
EST 0.000 4.293 128.250 12.777 73.9%
ZDS 0.000 2.259 57.840 6.320 38.9%
REC 0.000 0.991 44.290 3.558 17.1%
NEC 0.000 0.497 28.050 2.169 8.6%
MC 0.000 0.009 2.330 0.087 0.2%
All 0.000 0.003 0.950 0.030 0.1%

Solution Time vs. Bounding Rules

..

None MD MOD NRF EST ZDS REC NEC MC All
Bounding Rule

»

(6)]
L

N
Il

N
|

=
I

Ave. Solution Time (seconds)
w

o

Figure 5-1. Rulevs. Average Solution Time (seconds) for 5 Activities

The next step in the investigation of the bounding rules was to generate 288 teractivity
projects, one instance for each design point. These were solved both with all rules and without
rules. A time limit of 300 seconds (5 minutes) was imposed on the solution time for each problem.

When none of the rules were applied, only 54 of the 288 problems solved to optimality within the

5-29

time limit. By contrast, 256 problems solved to optimality within 300 seconds when al ofthe rules
were applied (see Table 55 and Figure 5-2).

Table 5-5. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities

Number of Optimal % of Total
Rule Solutions Found | Problems Solved
None 54 18.8%
All 256 88.9%
Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit
300
o & 250
+ N
E S 200
o 3
2 150
E =2
= © 100
8 £
R
0 |
None All
Bounding Rule

Figure 5-2. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities

When the number of problems solved to optimalty were tallied as a function of the problem
characteristics, neither the fraction of generalized precedences, the resource factor (RF), or the
resource strength (RS) were important factors in the number of problems solved within the time
limit. However, the number of modes and the network restrictiveness (RT) were important factors.
When no bounding rules were used, only problems (54 of 144) with a single mode were solved
within the time limit (Table 5-6 and Figure 5-3). When all of the rules were used however, 133 of
the 144 problems with a single mode (92.4%) solved to optimality within the time limit and 123 of
the 144 problems with three modes (89.6%) solved to optimality within the time limit.

5-30

Table 5-6. Rule vs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying Modes

Modes
Rule 1 3 Total
None 54 0 54
All 133 123 256
Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit
300
o & 250
+ N
25
£2 200
o
2 150
EZ
= ®© 100,
S
o |
0
1 3 Total
@ No Rules O All Rules Number of Modes

Figure 5-3. Rule vs. Problems Solved to Optimality (Within 300 sec.)
for 10 Activities and Varying Modes

Table 5-7 and Figure 5-4 show the results for varying levels of RT. When no bounding rules
are used, amost all of the problems solved to optimality within the time limit have an RT of 1.0
(the easiest case). When all bounding rules are used, 71.9%, 94.8%, and 100% of the problens
are solved with an RT of 0.0, 0.5, and 1.0, respectively. Based on these results, the bounding rules

materially improve solution time. All further experiments use al bounding rules.

Table 5-7. Rule vs. Problems Solved to Optimality (Within 300 sec.)
for 10 Activities and Varying RT

Network Restrictiveness
Rule 0.0 0.5 1.0 Total
None 0 6 48 54
All 69 91 96 256

5-31

Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit
300
% 250 —
e x
T
g ; 200 =
o
» 2
» = 150 -
53
= & 100 _—
o=
o ||
0
0.0 0.5 1.0 Total
@ No Rules 0 All Rules Network Restrictiveness (RT)

Figure 5-4. Rule vs. Problems Solved to Optimality (Within 300 sec.)
for 10 Activitiesand Varying RT

Comparison to Integer Programming As previously discussed, no other specialized algorithm

for solving the MRCPSP-GPR/EXP existsin the literature, leaving only general | P solvers
available for project scheduling. This new algorithm was tested against a leading commercia I1P
solver, IBM’s Optimization Solutions Library (OSL). OSL has the benefit of exploiting special
ordered sets of variables (SOS variables).

The same 1440 five-activity instances and 288 ten-activity instances used for testing the
bounding rules were used to compare the new algoritim against OSL. Of the 1440 five-activity
instances, OSL solved 1405 to completion within a 15minute time limit. Of the remaining 35
instances (2.4%) which exceeded the maximum alowed 15 minutes of CPU time, ten were allowed
to run for 2 hours each without successfully completing. On average, the Scheduler solved the
1440 test instances in 0.002 the time it took OSL to solve the 1405 (see Table 58). Recall,
though, that the 1440 instances that the Scheduler solved included the 35 instances which wer¢oo

difficult for OSL to solve in 15 minutes.

5-32

Table 5-8. Scheduler vs. OSL Solution Time (seconds) for 5 Activities

Solution Time (seconds) Ave Time as
Rule Min Average Max Std Dev % of "OSL"
OSL 0.03 1.71 63.74 5.89 100.0%
Scheduler 0.00 0.00 0.95 0.03 0.2%

When the Scheduler and OSL were compared against the 288 teractivity problems
(Figure 5-9), OSL failed to solve 31 instances (10.8%) within a 12-hour time limit. Comparing the
instances OSL did solve to the Scheduler results, the Scheduler still solved the problem instancesin
5.2% of the time required by OSL.

Table 5-9. Scheduler vs. OSL Solution Time (seconds) for 10 Activities

Solution Time (seconds) Ave Time as
Rule Min Average Max Std Dev % of "OSL"
OSL 0.10 326.72 29460.57 1957.34 100.0%
Scheduler 0.00 17.09 872.71 88.35 5.2%

Taking a closer look at the Scheduler versus OSL for solving tenractivity projects, consider the
impact of RT. RT had a particular impact on the relative solution times of the Scheduler and OSL
(see Table 5-10 and Figure 5-5). The higher the Restrictiveness (the easier the undetying
network), the more the Scheduler improved solution time. For totally unrestricted networks (RT =
0.0), the Scheduler was only about three timesasfast as OSL. For increasingly restricted
networks, the Scheduler considerably decreases solution time The results of this analysis confirm
the literature that general | P solvers are not usually as efficient solving project scheduling problems

as specialized algorithms.

Table 5-10. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities

RT OSL Sub Improvement

0.0 131.260 44.252 0.337

0.5 188.008 13.379 0.071

1.0 698.890 0.017 0.000
Total 326.723 17.085 0.052

5-33

Scheduler vs. OSL Improvement by
Restrictiveness

1.200
(&)
£ 1.000 |
=
c
< 0.800
)]
@ 0.600
o |
kS
c 0.400 +
o
8 0.200 |
LL

0.000 N e — . o |

0.0 0.5 1.0 Owerall

= Scheduler —e— OSL Restrictiveness

Figure 5-5. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities

Solution Results vs. Key Parameters. Attention now turns to the question of how key

Table5-11. Full Test Design

parameters affect solution results. To answer this question, thefull test design in Table 5-11 was
used.

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 @ 20
Lag Fraction 0.00 | 0.20
Project Network Restrictiveness 000| 0.25| 050| 0.75| 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 050 | 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00| 050 | 1.00
Total Renewable/Nonrenewable Resource Strength 0.00| 0.50| 1.00
Total Combinations = 960

One problem instance was generated at each of the 960 design points for projects with 10, 20,

5-34

design (Figure 5-12) was generated for projects with50 activities.

and 30 activities. Additionally, one instance at each of the 576 design points in theminimal test

Table 5-12. Minimal Test Design

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 | 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 050 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 050 1.00
Regular Renewable/Nonrenewable Resource Strength 050 1.00
Total Renewable/Nonrenewable Resource Strength 0.00 050 1.00
Total Combinations = 576

Each of the problem instances was solved using the Scheduler with a maximum time limit of
20 seconds. Since the objective of this experiment was to take a broad view ofsolvability as a
function of key parameters, the 20-second time limit was selected to control the total time required
to solve the 3456 test problems. Table 513 shows the overall results, listing the number of
problem instances which were infeasible, the number which exceeded the 26second time limit, and
the number solved to optimality. Figures 56 and 5-7, chart the number of occurrences and relative

percentage of each result, respectively. The reason for these results was investigated further.

Table 5-13. Solution Results

JOBS JOBS
RESULT 10 20 30 50 10 20 30 50 Total
Infeasible 85 134 156 97 89% 14.0% 16.3% 16.8%| 472
Over 20s Limit | 203 429 515 330 21.1% 44.7% 53.6% 57.3%| 1477
Optimal 672 397 289 149 70.0% 41.4% 30.1% 25.9%]| 1507
Total 960 960 960 576 | 100.0% 100.0% 100.0% 100.0%]| 3456

Consider first the infeasible problems. Though an in-depth discussion of the infeasible
problems has little bearing on the effectiveness of the Scheduler, it does provide worthwhile
insights into the nature of the MRCPSR-GPR/EXP.

Kolisch et al. (1995) report that alow availability of resources can lead to infeasible problem
generation. The resultsin Table 5-14 confirm this conclusion, where a RS (regular plus
expediting) of zero accounts for 68% of infeasible problems overall and an RS of 0.50 accounts for

32%.

5-35

Solution Result vs. Number of Activities

10

20
Number of Activities

1000
[72]
(]
o
3 600 | O Infeasible
8 @ Over 20s Limit
S 400 1 O Optimal
3
c 200
=)
zZ

0
10 20 30 50
Number of Activities
Figure 5-6. Solution Results as Occurrences
Solution Result vs. Number of Activities

100.0%
3
o 80.0% -
C
o
2 60.0% O Infeasible
8 B Over 20s Limit
EJ 40.0% 0 Optimal
C
8 20.0% -
o}
o

0.0%
30 50

Figure 5-7. Solution Results as Percentages

5-36

Table 5-14. Infeasible Problems

Activities
RS 10 20 30 50 Total |Percent
0.0 70 94 99 59 322 68.22%
0.5 15 40 57 38 150 31.78%
1.0 0 0 0 0 0 0.00%
Total 85 134 156 97 472 100.00%

Figure 5-8 shows the percentage of infeasibilities accountable to each level of RS for activities

of different size.

Infeasibility vs. Resource Strength
(Total RS = Regular RS + Expediting RS)

100%
2 _-
g 8% -
°
T 60% - mRS=10
= BRS=0.5
3 40% ORS = 0.0
=
S 20%
X

0%

10 20 30 50

Number of Activities

Figure 5-8. Infeasible Problems vs. Resource Strength

The increase in the nunber of infeasible problems as a function of RS is compounded by both
the number of modes in the project and the percent of activities with generalized precedence. Table
5-15 shows that threemode projects account for 65% of the infeasibilities, while sirgle-mode
projects account for only 35 %. When modes and RS are considered together, threenode projects
with a RS of zero account for 51% of the infeasibilities. Figure 59 also depicts the relationship of
RS and mode in infeasibilities. Note that the dhart includes all infeasible instances, therefore, the

sum of the two columns adds to 100%.

5-37

Table 5-15. Infeasiilities by RS and Mode

MODES MODES
RS 1 3 1 3 Total |Percent
0.00 81 241 17.2% 51.1% 322| 68.22%
0.50 83 67 17.6% 14.2% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%
Total 164 308 34.7% 65.3% 472| 100.00%

Infeasibility vs. Resource Strength & Modes
(Total RS = Regular RS + Expediting RS)

100%
2
S 80%
g
% 60% r mRS =10
= _
g BRS =05
o 40% ORS = 0.0
c
= 51.1%

o
X
17.2%
0%
1 3

Modes Per Activity

Figure 5-9. Infeasible Problemsvs. RS and Mode

Table 5-16 shows that projects in which 20% of the activities have generalized precedence
account for 76% of the infeasibilities, while projects with only standard finish-start precedence
account for only 24%. When generalized precedence and RS are considered together, problems
where 20% of activities have generalized precedence and where RS iszero account for 45% of the

infeasibilities (depicted aso in Figure 5-10).

Table 5-16. Infeasiilities by RS and Percent of Activities with Generalized Precedence (GPR)

GPR % GPR %

RS 0% 20% 0% 20% Total |Percent
0.00 108 214 22.9% 45.3% 322| 68.22%
0.50 5 145 1.1% 30.7% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%

Total 113 359 23.9% 76.1% 472| 100.00%

5-38

Infeasibility vs. Resource Strength & Gen Prec
(Total RS = Regular RS + Expediting RS)
100%
o
S 80%
o
< 60% | mRS=10
= mRS =05
B 40% - ORS = 0.0
IS 1.1%
S 20% 45.3%
S5 22.9%
0%
0% 20%
% of Activities with Generalized Precedence

Figure5-10. Infeasiilitiesvs. RS and Percent of Activities with GPR

Consider, next, the problems whichare not solved within the 20second time limit. Figure 5
11 shows the total number of problems which exceeded the 20second time limit versus network
Restrictiveness. Since the total number of feasible problems was different for each project size, the
same data is presented in Figure 512, standardized as the percentage of problems exceeding the
time limit attributable to each level of RT. Note that Restrictiveness does not appear to play as
important arole asit did in the number of problems which wereinfeasible. As the number of
activities in the problem increases, so does the percent of problems with an RT of 1.0 exceeding the
time limit. However, the percentages attributable to the other levels of RT remain fairly
proportional in relation to eachother. For example, going from problems with 20 activities to
those with 30 activities shows that of the problems which exceed the 2@second limit, the percent
attributable to an RT of 1.0 increases from 6.1% to 8.5%. Although the percentage attributableto
an RT of 1.0 reduces the absolute percentages attributable to the other RT levels, an RT of 0.25
still attributes between 64-69% of what an RT of 0.0 attributes, an RT of 0.5 still attributes
between 63-70% of what an RT of 0.0 attributes, and an RT of 0.75 still attributes between
58-64% of what an RT of 0.0 attributes.

5-39

Projects Exceeding 20-Sec. Limit vs. Restrictiveness

200

100 -

600
£
— 500
8
(9V]

3 1.00

2 400
S W 0.75
3 0 0.50
S 300 -
X B 0.25
% 3 0.00
(@]
2
e
(a
©
3

10 20 30 50
Number of Activities

Figure5-11. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Occurrences)

% of Problems Exceeding 20-Second Limit by Restrictiveness
100.0% —H
80.0%

60.0% -

01.00
m0.75
00.50
m0.25
00.00

40.0%

20.0% -

% of Feasible Problems Exceeding 20s
Limit

0.0%

10 20 30 50

Number of Activities

Figure5-12. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Percentages)

5-40

Though restrictiveness is only moderatelyimportant to the number of activities which do not
solve in the 20-second time limit, resource strength is a significant factor. Figure 513 showsthe
percentage of feasible problems which exceed the time limit versus RS. Thex-axis is divided by
the RS of regular resources, with multi-shaded columns representing the different levels of RS of
expediting resources (ERS). There are atotal of six columns representing the combinations of
regular and expediting resources. Problems were generated to have adtal RS of at most 1.0.
Therefore, there is no column corresponding to an ERS of 1.0 when the RSis 0.5 or 1.0. Nor is

there a column corresponding to an ERS of 0.5 when RS equals 1.0.

Feasible Problems Exceeding 20 Seconds vs. RS

100%

80%

60% + B ERS = 0.00
OERS=05
OERS=10

40%

20% -

[]

RS=0.0 RS =0.5 RS =1.0

% of Problems Exceeding 20-Sec Limit

Regular Resource Strength

Figure5-13. Solution Time Exceeding 20 Seconds vs. RS

Note that when the regubr RS is 0.0, the impact of expediting RS is negligible, with roughly
the same percentage of problems exceeding the time limit. On the other hand, when RS = 0.5,
including additional resources improved to some degree the number of problems which were soled
within the time limit. This effect is likely aresult of the way the Scheduler enumerates solutions.
Recall that the Scheduler attempts first to schedule activities at their early start times and then at

5-41

progressively later times. The existence of expediting resources generally makes more time
compressed schedules feasible. Since the more timecompressed schedules are enumerated early
on, if the cost savings from a shorter project outweighs the cost of the expediting resources, the
schedules found early on provide tighter bounds on the optimal solution and, thus, allows quicker
fathoming of unproductive partial schedules. Quicker fathoming, in turn, leads to faster
completion of the algorithm. Finally, most problems with an RS = 1.0, the easiest ofthe problems,
can be solved within the time limit.

Consider the feasible problems which are solved within the 28 second time limit. Figure 514
shows the relativesolvability of the levelsin each of the twoelevel factors. The x-axis shows the
two-level factors: modes, duration (Dur), number of renewable / nonrenewable resources (#Res),
resource factor (RF), and percent of activities with GPR (Lag%). Along with the factors are listed
both levels: respectively termed the Xt level and the 2nd level. They-axis shows the number of
problems solved to optimality as aratio of the Ist factor to the 2nd factor. The columns represent
problems with 10, 20, 30, and 50 activities each.

Problems Solved by 2-Level Factors

1.00

0.80 -]

0.60 -

0.40 -

0.20 1 —

Ratio of Problems Solved at 1st
Level to 2nd Level

0.00

Mode: 3/1 Dur:20/10 #Res:3/1 RF:1/05 Lag%:20/0

O Jobs = 10 O 20 @ 30 © 50 Factor: 1st Level / 2nd Level

Figure5-14. Problems Solved by 2-Level Factors

As an example, consider the number of mades per activity. An activity may have either three

modes (the st level) or one mode (the 2d level). Focusing just on problems with ten activities,

5-42

note that the light gray column above the labelMode: 3/ 1 indicates avalue of 0.83. Thisvalue
reflects that the number of tenractivity problems solved to optimality in which each activity has
three modes is 83% of the number of problems solved in which activities have only one mode.
Hence, problems with ten activities and three modes per activity are smewhat more difficult than
similar problems with only one mode per activity. Thisisreally no surprise since the size of the
problems grows as the number of modes per activity increases.

Having reviewed the chart, note that modes per activity is the mosclearly influential two-level
factor on the ability to solve problems. As problem size (.e., activities) increases, the impact of
modes aso increases. Trends in the other factors are not quite so clear, but it is evident that all of
the factor levelsidentified as the 1st level are at least more difficult than levels identified as the 2nd
level. Thisis not surprising since the 1st and 2nd levels were identified so that the theoretically

more difficult level was the first level; thus, maintaining ratios below 1.0.

Feasible Problems Solved Versus Restrictiveness
100%

80% O RT = 0.00

ORT = 0.25
60% B RT = 0.50
20% | ORT =0.75
0 mRT = 1.00
20%
0% 0
10 20 30 50

Number of Activities

% of Problems Solved
|

Figure5-15. Problems Solved Versus Restrictiveness

Turning now to the factors with more than two levels, Figure 515 shows a very clear trend in
the impact of network restrictiveness on the percentage of feasible problems solved within the 20
secondtime limit. AsRT increases (i.e., the network structure becomes more constrained), the

percentage of problems solved increases as well. The Scheduler performed very well on problems

5-43

with relatively high RT values, even for the problems with 50 activities. An RT of 0.0, by
contrast, makes a problem much more difficult and relatively few of these problems (especially in
projects with over ten activities) solved to optimality within 20 seconds.

An analysis of resource strengths also provides some interestng insights (see Figure 5-16).
The easiest problems are those with aregular RS of 1.0. These are problems where enough free
(i.e., no cost) resources are available to schedule every activity at its early start time (the GCPM
schedule). For problems with ten activities, there isanear linear increase in the percentage of
problems solved as regular RS increases. For any level of RS, the percentage of problems solved

also increases in near-linear fashion for increasing ERS.

Feasible Problems Solved Versus RS (Reg, Exp)
100%
9 0 ’7 |_
o 80% @ (0.0, 0.0)
O —
N o (0.0, 0.5
n 60% 1 [7] (0.0,0.5)
£ | @(0.0, 1.0)
S a0% { || |@(0.5,0.0)
a m (0.5, 0.5)
§ 20% | 'O(1.0,0.0)
il _
10 20 30 50
Number of Activities

Figure5-16. Problems Solved Versus Resaurce Strength

For problems with more than ten activities, a different phenomenon presentsitself. While the
above observations (those of increasing RS yielding an increasing percentage of problems solved)
hold true for resource strengths of 0.5 and 1.0, hisis not the case for RS of 0.0. Whenthe RSis
0.0, an ERS of 0.5 provides fewer solved problems than an ERS of 0.0. Thisis contrary to the
aforementioned trends. This apparent aberration may be explained by the tradeoff between
computational overhead and upper bounding of the solution. The more expediting resources the
Scheduler has to trade, the more overhead required to account for resources and their costs. Thus,

given some fixed RS, the problems solved should decrease as ERS increases. On theother hand,

5-44

the Scheduler searches for schedules beginning with earlier activity start times and continuing to
progressively later start times. When ERS is high, more schedules with relatively early start times
become feasible, alowing for a good upperbound on the objective function to be found early in the
search. The upper bound allows faster fathoming of unproductive partial schedules, resulting in
faster solution times. Thus, given some fixed RS, the problems solved should increase as ERS
increases. Characteristics of the problemitself and of the Scheduler may be driving solution time,
and consequently the number of problems solved, in opposing directions. Defining this tradeoff in

greater detail may be worth further investigation.

Solution Time Having reviewed the impact of key parameters on the problem results{.e.,
feasibility and tractability, defined as solvable in 20 seconds or less), consider now in more detalil
the solution times required by the Scheduler. A discussion of those problems which were solved in
20 seconds or lessis provided first. Results are, then, reported on a subset of problems which were

allowed to solve without time limit. The same test set used in the previous subsection is used here.

Figures 5-17, 5-18, and 5-19 show the cumulative number of feasible problems solved, broken
out by time bin. The x-axis shows the time bins, which are 0.01, 0.1, 1, 10, and 20 seconds. If the
time bins were labeled T* through T, respectively, then a problem falls into time bin, T, if it took
longer than T to solve but no morethan T. For instance, a problem which took 0.06 seconds to
solve falsinto time bin T2, 0.1.

Figure 5-17 presents the cumulative number of feasible problems solved by number of project
activities (or jobs), Figure 5-18 by RT, and Figure 5-19 by RS. The most noteworthy observation
isthat, in most cases, the number of problems solved in the first 0.01 seconds comprises at least
50% of all problems solved in 20 seconds or less. For example, note in Figure5-17 that for
problems with 10 activities, 77% of problems solved within the 268second time limit, while 48% of
problems solved within 0.01 second. Therefore, 62% of problems which solved within the 20
second time limit did, in fact, solve within 0.01 second. Some insights into this result are provided
in the next subsection.

Table 5-17 shows solutions times for a subset of 10- and 50-activity projects where no time
limit was imposed. The subsets come from the problems which previoudly required more tha 20
seconds to solve. A total of 146 problems with 10 activities were solved to optimality. As
reported above, 203 problems exceeded the previous 20second time limit. A few of the most

difficult of these problems were not solved to optimality in thisexperiment due to the excessive

5-45

solution time. One of these problems, a problem with three modes per activity, an RT of 0.0, three
renewable and three nonrenewable resources, an RF of 1.0, an RS of 0.0, and an ERS of 1.0, was
terminated without completionafter 302,800 seconds (over 84 hours). Problems of similar
difficulty were, therefore, not attempted. In al cases, the problems expected to take a similarly
long time to solve had an RT of 0.0 (atotally unconstrained network), an RF of 1.0 (every actiity
requiring every resource), and an RS of 0.0 (so few regularly available resources asto eliminate
the possibility of scheduling any two activitiesto be in progress at the same time without incurring

an expediting resource cost, provided any expeditiig resources were even available).

Cumulative Problems Solved by Time Bin/Jobs
100%

80% -

©
(]
=
8 5
(2]
—e—Jobs = 10
S 2 60% -
a i —=— Jobs = 20
% % 40% | —a—Jobs = 30
% E A//é:—j —e—Jobs = 50
fﬁ)
m 0 A
5 20% —
X
0%
0.01 0.1 1 10 20

Time Bin (seconds)

Figure5-17. Cumulative Problems Solved by Time Bin and Jobs

Of the 10-activity problems solved to optimality, the average solution time was just over 32
minutes, with a minimum time of 20.2 seconds and a maximum time of just over 19 hours.
Twenty-three of the 146 problems required longer than the average solution time.

Two projects with 50 activities were also solved to optimality. Both problems had three modes
per activity, an RT of 0.5, three renewable and three nonrenewable resurces, and an RF of 0.5.

The problems differed only in their resource strengths. One problem had an RS of 1.0 with an
ERS of 0.0 (no expediting resources, but sufficient regular resources to schedule all activities at

their early start time). This problem required 88.2 seconds to solve. The other problem had an RS

5-46

and an ERS both equal to 0.5. This problem required 10,994.7 seconds (a little over 3 hours) to

solve to optimality.

Cumulative Problems Solved by Time Bins / RT
100%
=
2% 80w -
°E / —e—RT =1.00
o
o = 60% A —4—RT =0.75
o=
@ g ——RT =0.50
o5 40% —=RT=025
m
° ——RT =0.00
0 20% A/‘/*_L
o
"
0%
0.01 0.1 1 10 20
Time Bin (seconds)
Figure5-18. Cumulative Problems Solved by Time Bin and RT
Cumulative Problems Solved by Time Bins / RS
100%
25
80% -
L O
% £ —e— (1.0, 0.0)
g ; 60% —+—(0.5,0.5)
2 % / ’ (0'51 OO)
o -
B L 20% - —=—(0.0, 1.0
I e [o
= § 20% —— —+—(0.0,0.0)
S o
"
0%
0.01 0.1 1 10 20
Time Bin (seconds)

Figure5-19. Cumulative Problems Solved by Time Bin and RS

5-47

Table 5-17. Solution Time for 10- and 50-Activity Projects

Solution Time (seconds)
Activities Count Min Average Max Std Dev
10 146 20.2 1920.6 69356.2 7495.4
50 2 88.2 5541.5 10994.7 5453.2

Time to Optimal Solution 1n the previous subsection, it was shown that generally more than

half of al problems solved within the 20-second time limit were, in fact, solved withinthe first 0.01
second. Thisresult is understood by focusing on the time it took for the Scheduler to find an
optimal solution compared to the time it took to complete the solution process. As each problem
was solved, any time the Scheduler found a soluion better than the incumbent best solution, the
time this solution was found was recorded. When the solution process was completed, then, not
only was the total solution time reported, but the time required to find the optimal solution was also
reported. The difference between the time for the entire solution process and the time to find the
optimal, therefore, is the time required to verify that the optimal isindeed optimal. Ideally, any
enumeration scheme finds a good solution, or upper bound, earlyin the process to enable quicker
fathoming of unproductive branches. No upper bound is better, of course, than an optimal

solution.

The x-axis of Figure 5-20 is divided into the completion time bins used previoudly (.e., the
time bins used to divide thecompletion times, not the timesto optimal). For the set of problems
completing within each of the completion time bins, the timesit took to find an optimal solution to
each problemin the set were averaged. These averages are reflected on thg-axis. For instance,
for problems with ten activities which took at least ten seconds to solve but no more than 20, an
optimal solution was found, on average, in just under six seconds.

The resultsin Figure 5-20 are not the most revealing, however. If the timaequired to find an
optimal solution are also binned and, then, compared to the completion time bins, a much clearer
pictureis presented. Figure 521 presents this picture. Note that for the vast majority of
problems, an optimal solution was found in nomore than 0.01 second. In some cases, though, it

till took up to 20 seconds to complete the algorithm.

5-48

Average Time to Optimal vs. Completion Time Bin

/
/j —e— 10
// —a—-20
V4 —a—30
/ —+—-50
A
» —» /

0.01 0.1 1 10 20
Completion Time Bin (seconds)

Average Time to Optimal
(seconds)

O B N W b~ 01O N 0

Figure5-20. Average Time to Optimal Versus Completion Time Bin

Optimal Time Bin vs. Completion Time Bin
900
800
700
600
500

400
300

200 20

10
10% 1 Time Bin to

0.1 Completion
0.01

01 0.01 (seconds)
ST

20
Time Bin to Optimal

(seconds)

Figure5-21. Optimal Time Bin Versus Completion Time Bin

Figure 5-22 presents the data in another way, showng the time bins to optimal for the different
size problems (i.e., number of activities). As expected, the smaller the problem, the sooner the
Scheduler can be expected to find an optimal.

5-49

Problems Solved vs. Time Bin to Optimal

600

500 '\
©
2 o\
s 40 —e—Jobs = 10
g 300 - —m—Jobs = 20
% —a—Jobs = 30
2 2007 —+—Jobs = 50
H+

100 -

0

0.01 0.1 1 10 20

Tim Bin to Optimal (seconds)

Figure5-22. Problems Solved Versus Completion Time Bin

Taking alook at thetime to find an optimal solution versus RT (Figure 523) shows that, as
expected, the higher the RT (and, hence, the easier the problem), the sooner the Scheduler is
expected to find an optimal.

Problems Solved vs. Time Bin to Optimal by RT

600

500
©
SR .
2 400 RT = 1.00
e \ —+—RT=0.75
g 3% \ —a—RT = 0.50
S 200 & —s RT=025
< —+—RT =0.00

100

0 -
0.01 0.1 1 10 20
Time Bin to Optimal (seconds)

Figure5-23. Problems Solved Versus Completion Time Bin by RT

5-50

Finally, the time to find an optimal solution can be compared to the RS (Figure 524). Most
noteworthy, here, is that the Scheduler finds more optimal solutionsin 0.01 second when (RS,
ERS) equals (0.0, 1.0) than it equals (0.5, 0.0). One might expect the overlead associated with
accounting for expediting resources to significantly sow down the solution process. As seen
before, though, this overhead is overcome by the degree to which the expediting resources enable
schedules with early start times, and their relatively good objective function values, to be feasible.
It could be speculated that changing the costs of activity modes (which are start time dependent)
relative to the cost of expediting resources might change this balance and lead to somewhat
different results. An investigation into this hypotheses is outside the scope of this study, but may

be worth future consideration.

Probs Solved vs. Time Bin to Opt by (RS, ERS)
450
400 -
350 -
? \ —=(0.0,0.0)
g 300 —4—(0.0,0.5
N 250 - (0.0,0.5)
£ ——(0.0,1.0)
5 2001 \ —e—(0.5,0.0)
S 150 N o
a ——(0.5,05
- § g; —s—(1.0,0.0)
50 -
0 T T
0.01 0.1 1 10 20
Time Bin to Optimal (seconds)

Figure5-24. Problems Solved Versus Completion Time Bin by RS

Returning to the 10-activity problems solved to optimality without time limitreveals that, on
average, the optimal was found in the first 33.3% of the solution time and that the remaining
66.7% of the time was spent verifying the optimal (see Table 518). Noteworthy isthat for the 16
activity problem which took the longest to sole (about 19 hours), an optimal solution was actualy
found in the first 0.04 seconds.

5-51

Table 5-18. Timeto Optimal (10-Activity Projects)

Time to Optimal (% of Total Solution Time)
Activities Min Average Max Std Dev
10 0.0% 33.3% 100.0% 34.4%

Turning to the 50-activity problems shows that the problem which solved in 88.2 seconds
required 74.9 seconds to find an optinal (84.9% of solution time) while the problem which solved
in 10,994.7 seconds (around 3 hours) required 3982.3 seconds (around an hour) to find an optimal

(only 36.2% of solution time).

Completion Time vs. k. The scheduling algorithm developed in this clapter is used to solve the

subproblems of the decomposition approach discussed in the next chapter. For the decomposition
approach to work, each subproblem (or project) must be solved to find thé-best schedules for that
project. Besides finding thek-best schedules for purposes of the decomposition algorithm, a
scheduler may be interested in thek-best simply to be able to present alternatives to a decision

maker.

To assess the impact on solution time of the choice ofk, the test set used above (with10-, 20-,
30-, and 50-activity projects) was solved again for varying values of k. To do so, the problems
which were solved within the 26second time limit imposed above were resolved to find the 10,
100, and 1000 best solutions. Since it is reasonable to expect that the Scheduler should take longer
to track a higher number of best solutions, the imposed solution time limit was increased to 60
seconds. Table 5-19 and Figure 5-25 show that for all values of k, most problems were solved

within the 60-secord time limit.

Table 5-19. Problem Solution Results for k=1, 10, 100, 1000

k -best Solutions
1 10 100 1000 Total
Exceeds Limit 0 1 19 70 1567
Optimal 1507 1506 1488 1437 5938
Total 1507 1507 1507 1507 7505

Reviewing a few fundamental statistics related to the solution time reveals (in Figure 526) that

while the maximum time required to solve the problems approaches the 68second limit (especially

5-52

for k =100, 1000), the average completion times were relatively low (under seven seconds).

Figure 5-26 also shows the average time to find an optimal.

Problem Solution Results for k=1, 10, 100, 1000
(Limit = 20s for k=1 / 60s Otherwise)
1600
1400 -
1200 —
£ 1000 -
% 800 | | |mExceeds Limit
2 O Optimal
& 600 A P
H+
400 -
200 —
0
1 10 100 1000
Best Solutions (k)
Figure 5-25. Problem Solution Results for k=1, 10, 100, 1000
Solution Time Statistics for k=1, 10, 100, 1000
70
60
> 50
T —a— Max to Comp
§ 40 —o— Awe to Comp
% 30 - —e— Awe to Optimal
£ —a— Min to Comp
— 20 A
10
0 i T T r Y
1 10 100 1000
Best Solutions (k)

Figure 5-26. Solution Time Statistics for k=1, 10, 100, 1000

5-53

The average time to completion is shown in Figure 527, this time, breaking completion time

out by the number of activitiesin the project.

Average Completion Time vs. k

7
c
S 61
()]
g b
= 5
7 —e—Jobs = 10
O o 4 -
25 —= Jobs = 20
() o
£E83 —a—Jobs = 30
: 2 —e—Jobs = 50
&
<

0

1 10 100 1000
Best Solutions (k)

Figure5-27. Average Completion Time vs.k

While the time to complete the solution process increases ask increases, the average time
required per solution found drops off dramatically (Figure 528). This result suggests that the
marginal cost (in terms of solution time) of increasingk gets very small as k get larger. The
implication of this finding (to be addressed in greder detail in the next chapter) isthat if one wishes
to evaluate the set ofk-best solutions to find a solution with certain properties €.9., feasibility in
the decomposition approach), it may be better to generate a greater number of solutions initially
than to risk having to resolve the problem if the intial set does not include a solution with the
desired properties.

Figure 5-29 shows the overall average solution time and overall average timeto find an
optimal solution versusk. Inthisfigure, however, the x-axis is scaled proportional to k.
Consequently, the nature of the time versusk relationship can be better viewed and predictions can
be made about the expected solution time for other values ok, k < 1000.

5-54

Average Time Per Solution

1.4
.g 1.2 {
=
e 14
2% —e—Jobs = 10
5208 -
v S —eo— Jobs = 20
.E 2 0.6 —a—Jobs = 30
S 0.4 —=—Jobs = 50
©
2 02
< \

0 ‘ -
1 10 100 1000
Best Solutions (k)
Figure5-28. Average Time Per Solution
Overall Average Solution Times vs. k
6
% 5 /0
c
o
o 4 -
L
g3
[b
o 2
o
©
o 14
>
<
0 T T T T T
0 200 400 600 800 1000
Best Solutions (k)
—e— Ave to Completion —e— Ave to Optimal

Figure5-29. Overdl Average Solution Times Versusk

Summary and Conclusions.

In this chapter, the literature was reviewed for solution approaches applicable to the

MRCPSP-GPR/EXP. Two approaches, integer programming and an implicit enumeration scheme

5-55

by Talbot (1982), were identified for their potentia as either a direct approach for solving the
MRCPSP-GPR/EXP or as a basis which could be extended for the MRCPSRGPR/EXP.

The agorithm by Talbot was extended to incorporate the characteristics of generalized
precedence andthe availahility of expediting resources. Additional bounding rulesto increase the
speed of the algorithm were presented.

The resulting Scheduler was tested to (1) evaluate the computational contribution of the
bounding rules; (2) assess the speed of theScheduler versus a commercially available P solver; (3)
evaluate the problem characteristics which most impact solution time; (4) investigate how early in
the solution process the optimal solution is actually enumerated; and (5) assess the impact on
solution time of solving a problem to findk-best solutions for varying values of k.

The results of testing were positive. The Scheduler is the first specialized algorithm capable of
solving the single-project MRCPSP-GPR/EXP and its completion times were favaable compared
to the commercial IP solver. The solution times required by the Scheduler for findingk-best
solutions appear to grow slowly enough to make the Scheduler an appropriate solver for the

subproblems in the decomposition approach presented in Giapter V1.

5-56

V1. Multi-Project Scheduling Through Decomposition

Overview

The Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem with Generalized
Precedence and Expediting Resources (MRCMPSRGPR/EXP) concerns scheduling a
hierarchically structured, multi-project program. At the lower level of the hierarchy areP projects.
Each project is composed of a set of multimodal activities which are related by generalized
precedence and which compete for limited renewable and nonrenewable projecievel resources.
Project-level resources are wholly controlled and allocated by the project. Each activity in a
project may, in addition, require some quantity of limited renewable and nonrenewable resources
which are common to the projects (programlevel resources). Project activities may also be related
through generalized precedence to activities in other projects.

At the upper level of the hierarchy is the program, which controls and allocates the program
level resources (or those resources common to the projectisand which deconflicts any activity start
timesthat violate the programlevel generalized precedences. The objective of the problemisto
minimize total program costs, which may, in some cases, result in schedules which would be
suboptimal at the projed-level if the projects had been treated as independent problems, free of
program-level considerations.

The MRCMPSP-GPR/EXP could be modeled and solved as a singlesuper project using the
approach developed in Chapter V. However, as the size of the progren increases, so doesthe
difficulty in scheduling a program as a single super project. Decomposition of related mult
project problems, by contrast, has proven to be a successful approach for dividing and conquering
such problems (e.g., Deckroet al., 1991; Van Hove, 1998). The decomposition of multiproject
programs also lends itself to valuable economic interpretations, such as those proposed by Baumol
and Fabian (1964) and Lasdon (1970).

The approach developed in this chapter decomposes the multiproject MRCMPSP-GPR/EXP
into a number of smaller, independent subproblems (the individual projects) and a single master
problem (the program). The master problem adjudicates the competingdemands of the
subproblems, which include the requirements for common resources and time sots in which to

schedule activities.

Each subproblem is solved to find a set consisting of thek-best solutions (in terms of objective
function value) to that problem. When all of the subproblems have been solved, the sets of best
solutions are passed up to the master problem which attempts to identify one solution from each
subproblem, the combination of which is feasible and optimal to the original problem. Chapter V
developed a specialized algorithm for generating thek-best solutions for the subproblems. This
chapter focuses on the mechanics of the multi-project decomposition and on solving the master
problem.

As with the subproblems, the approach for solving the master problem permits the generation
of k-best solutions to the maste problem. As presented in Theorem 61, under certain conditions
an optimal solution to the master problemis optimal to the original problem. Other than the
optimal solution, however, thek-best master problem solutions are not necessarily thek-best
solutions to the original problem. It is possible to setk = 1 to find only one optimal solution, if
desired.

The basic decomposition algorithm isfirst presented, followed by a number of acceleration
schemes. Comprehensive testing, which focuses on issuessuch as the benefit of the acceleration
schemes and the speed of the decomposition algorithm versus solving the problem as a single

project using the algorithm developed in Chapter V, is then detailed.

Decomposition Approachesin the Literature

One of the earlier decomposition approaches in the literature came from the work of Dantzig
and Wolfe (1960). Dantzig and Wolfe developed a decomposition approach for linear
programming (LP) which exploits the block-angular structure exhibited by many problems to
subdivide the problem into smaller subproblems that can be solved independently. Amaster
problem coordinates the solution process through Lagrangian multipliers which act asprices
charged to the subproblems for the use of resources that are common to th subproblems. The
master problem searches for the optima mix (convex combination) of subproblem solutions that is
optimal to the original problem.

The Dantzig and Wolfe decomposition approach has been used successfully by Wiley (1996)
and Wiley et al. (1998) for the Multi-Project Scheduling Problem (MPSP). The objective of the
MPSP isto minimize the cost or duration of a multiproject program by crashing or extending
some of its activities. However, activity crashing istied to specific limited resources. That is, for

every time period an activity is crashed, an additional amount of each resource is consumed. Since

6-2

these resources are limited, so is the amount of crashing possible. The MPSP addresses the multt
project problem at a high enough level of aggregation that the variables can be assumed to be
continuous. (The continuity of variables is a basic assumption of Dantzig-Wolfe Decomposition.)
As aresult, the Dantzig-Wolfe Decomposition approach for the MPSP has limited direct
applicability to the MRCMPSP-GPR/EXP where the mathematical programming formulation
dictates the use of zercone variables. Nevertheless, their use of decomposition for multiproject
scheduling is one of the few in the literature and adds to the theoretical basis upon with
decomposition methodologies, in general, are built.

Sweeney and Murphy (1979) present a decomposition principle which is similar to Dantzig
Wolfe decomposition in that it exploits the blockangular structure of large problems to decompose
them into a st of smaller, easier-to-solve problems. The main difference is that Sweeney-Murphy
Decomposition, relying on the principle of Lagrangian relaxation, is designed for problems with
integer variables, while Dantzig-Wolfe Decomposition assumes continuous, Inear variables. The
subproblems are solved to calculate a set of best solutions for each subproblem. These sets of best
solutions are passed to the master problem which attempts to identify one solution from each
subproblem which, when combined, are bothfeasible and optimal to the original problem. If a
combination of solutions cannot be identified, additional solutions are generated from the
subproblems and fed to the master problem. This process continues iteratively until an optimal
solution is obtaned.

Deckroet al. (1991) use the Sweeney-Murphy Decomposition approach to solve an instance of
the Resource Constrained, Multi-Project Scheduling Problem (RCMPSP). In solving their
problem, Deckroet al. deal with resource constraints exclusively at themaster level. The resulting
subproblems are simple resource-unconstrained, single-project scheduling problems (the optimal
solution can be found using the standard Critical Path Method). A modified zereone
programming code was used to find the best solitions to the subproblems, as well asto solve the
master problem.

Van Hove (1998) uses Sweeney-Murphy Decomposition to solve the Generalized, Multt
Modal, Resource-Constrained Multi-Project Scheduling Problem (GMRCMPSP). In his
formulation of the GMRCM PSP, subproblems (individual projects) contain generalized
precedences with minimal lags, renewable resources, and nonrenewable resources. The master, or

program-level, problem contains only nonrenewable resources. Consequently, the master problem

6-3

consists of selecting one solution from each subproblem which is feasible to the programlevel
nonrenewable resource constraints and that minimizes the program makespan. The decomposition
approach proved very successful to Van Hove's problem, allowing solution ofa problem with 8

subproblems, or projects, and atotal of 116 activities.

Sweeney-M urphy Decomposition

Because of recent success using the SweeneyMurphy Decomposition approach for solving the
RCMPSP and the GMRCMPSP, the approach provides a solid basis for solving the multi-project
MRCMPSP-GPR/EXP. This section presents the basic Sweeney-Murphy Decomposition
approach, discusses the choice of how many solutions to generate from each of the subproblems,

and develops alternative approaches for obtaining multtipliers.

Problem Decomposition Chapter |11 develops a complete zereone formulation of the

MRCMPSP-GPR/EXP. The block-angular structure of the problem takes the form in Figure 61.

Note that constraints (3) consist of constraints which pertain to indivdual projects, while
congtraints (2) are the coupling constraints which adjudicate the demands made on the program by
the projects. Using traditional Lagrangian relaxation methods (Geoffrion, 1974), the problem is
decomposed intoP independent subproblens, SP,??*%, shown in Figure 6-2.

The multipliers, ?, in SP, " weight the objective functions of the subproblemsin an attempt

to enforce the programlevel constraints. In this way, the program influences the scheduling
decisions made at the project level. If the multipliers are zero, e projects are scheduled without
regard for program-level congtraints.

Once the subproblems have been solved to find thek-best solutions to each problem, the
solutions are passed up to the program level where they are evaluated in a search for a combingion
which is feasible and optimal to the original problem. The master problem, (MP), takes the form
in Figure 6-3.

Note that for any givenp and any givenk, A py'; isaconstant. (MP) is solved to find an
optimal solution vector, ?*, which identifies the optimal combination of subproblem solutions. If
k islarge enough so that all feasible solutions to each subproblem are included in problem (MP),

then (MP) is equivalent to the original problem, (P) (Sweeney and Muphy, 1979: 1130). Solving

(MP), then, provides an optimal solution to (P). If (MP) does not contain all subproblem solutions

6-4

(the number of which could be intractable), then (MP) is arestriction of (P). Sweeney and Murphy
prove, however, that under cetain conditions, an optimal solution to (MP) is optimal to (P)
(Sweeney and Murphy, 1979: 1131).

Original Problem
P21
Problem (P): Minimize 2?7 ¢ X, (1)
p?1
Subject To
AX; ?AX, 20 2A X, ?AL, X0, ?bg (2
Bx, ?b, (©)
B.X, ?b,
Bo-Xp ?b,
BP?lXP?l ? bP?l
Ay, An? By, Bu, 2 Xy, ?
A ?72 2,.B,?2 7 "2, X,?72 "2,1?p?P7?1
30 Au3 30 B3 P, 3
Xy, 290,12, 1?2 p? P21 (4
Xy, ?0,integer, 1? p? P?1 (5)

6-5

where

A N, represents the programlevel precedence constraint coefficients,

A, , represents the programlevel expediting resource coefficients,

B N, represents the projectlevel precedence constraint coefficientsof project p,

B, , represents the projectlevel expediting resource coefficients of projectp,

Xn, represents the zerc-one variables associated with the activities of projectp,

X, represents theinteger variables associated with the expediting resources of projectp,

p, 1? p? P, areindices representing theP projects/ subproblems, and

P + 1 isthe index representing the program.

Figure 6-1. Block-Angular Structure

Subproblem for Project p

Problem SP, /2 :: Minimize c,7PA X,

Subject To B,x, ?b,

AN, A ? By, Bu,? Xy, ?
A ?72 2,B,?2 7° "2, X,?72 "2,1?p?P7?1
30 Au3 30 Bu3 Pu, 3

Xy, ?%0,1%,1? p? P21

Xy, ?0,integer, 1? p? P?1

)
(3)

(4)
)

6-6

where
W are Lagrangian multipliers associated with the coupling constraints (2)

A N, represents the programlevel precedence congraint coefficients,

A, , represents the programlevel expediting resource coefficients,

B N, represents the projectlevel precedence constraint coefficients of projectp,

B, , represents the projectlevel expediting resource coefficients of projectp,

Xn, represents the zerc-one variables associated with the activities of projectp,

X, represents the integer variables associated with the expediting resources ofproject p,

p, 1? p? P, areindices representing theP projects/ subproblems, and

P + 1 isthe index representing the program.

Figure 6-2. Sweeney-Murphy Subproblem

A lower bound, LB, on the optimal solution to (P) can be obtaired as the combination of

best solutions from each subproblem and is given by the following equation:
LB ?c, PHA, 1 270, PHAL YL 2 27 PHAL YL ? ooy PHA L, Wha P HDG(1D)

Define y , .-0 .- to be the solution to subproblemp in the optimal solution to (MP). An upper

bound, UB, on the optimal solution to (P) can be obtained by solving (MP) and letting
P71
9
UB?cy,?” (12)
p?1
where

N2y, Ly Ry, 2 (13)

is the corresponding set of subproblem solutions.

6-7

Master Problem
Problem (MP):

Ky K, Kp Kpor
L K \ok K vk K \ok K K
Minimize ’) (cy;). ? ’) (Cy, 2?7 .2 ’) (CpYp)?p ? ’) (CpoYpn)?pn
k21 k21 k21 k21

Subject To

Kpoy

(7)

K1 K, Kp
2 (AN ? P(AY;)25?7 .2 2 (AYE 25 ? 2 (Apyen)2em ?b, (8)

k?1 k?1 k?1 k?1
Kl
? % ?? (9
k?1
Kz
? 7 27
k.?l
Kp)
? 7%
k21 ?7?
Kpor ‘
? e ?7?
k?1
k
220,17 ?2pk (10)
where
K, ? the number of feasible solutions of Subproblemp,
y'; ? arank-ordered feasible solutionk of Subproblem p,
?'; ? 1if solution k of Subproblem p is selected; 0, otherwise.
Figure 6-3. Sweeney-Murphy Master Problem
Now, define
?2UB?LB" (14)

to be the difference between the upper bound and lower bound on the solution to (P), and define

6-8

r r Kp r r 1
2,2, 2pA, Y 2, LA LYY (15)

to be the difference between the worst solutiorto subproblem p and the best solution to

subproblem p. Optimality conditions are given in the Sweeney-Murphy Optimality Theorem,

provided as Theorem 6-1.

Theorem 6-1.

Sweeney-Murphy Optimality Theorem (Sweeney and Murphy, 1979: 1131)

Theorem:

Proof:

112,22 for 12 p? P21, then 7y, 2" %y, 2%y, 2 % yon 2 17

is an optimal solution to (P).

Thevaueof 7y, 2 4 ¥, 2 %W Yo % Yo 2 ¢! inProblem (P) isan
P71

upper bound. That is, UB ? ? cpyp??*?

p?L
Suppose ? a | ? k;; for subproblem P such that y:; is part of afeasible
solution to (P) yielding avalue Z? UB.

Show that this supposition leads to a contradiction and, hence, no subproblem

solutions not already included in (MP) can be part of a better solution to (P).

The minimum value of a Lagrangian relaxation of (P) with y ; held fixed at

) P21)
Yy isgivenby z? ? %p ?uAp'Z/lp ? 'Z:T) ? uATJZ/% ? ub, . Therefore,
p21
p?p

6-9

P71 i

229 T, 20A, %L 2% 2pA YL 2 b,
575
P21 i

22 % 2uA, Y2 2puA Y 28 2pA Yl 2 b,

p?1

2B L, 2pA, Y 28 2pA Y

2 LBN???,

2 LBU%? min?% 7
? LBU???
?UB
Thisis a contradiction since it was assumed that Z ? UB. Therefore,

?yl Y, Y LY 7 is an optimal solution to (P).

The Sweeney-Murphy Optimality Theorem hinges upon the identification of thek-best
solutions to each subproblem. The Scheduler presented in Chapter V is designed to find thek-best
solutions to the subproblems and is used for that purpose. One important consideration, though,
that is neither discussed by Sweeney and Murphy nor addressed yet in this discusson, is the
possibility of multiple solutions of equal value.

The Sweeney-Murphy Optimality Theorem shows that, under specific conditions, no solution
not aready in the set of k-best solutions can contribute to a better solution to the original problem.
This can be true, though, only if the solutions already in the set ofk-best are strictly better than the
solutions not in the set. If a solution not in the set has a value equal to that of thek-th best

solution, then thek-th best solution cannot be used in the calculation of ? o whichisused in the

optimality test. Suppose that a set of k-best solutions has been generated and that a solution exists
that is not in the set but which has a value equal to that of thek-th best solution. Since the set
contains only k solutions, it is rather arbitrary asto whether thek-th best solution currently in the
set or the alternate solution of equal value should be included in the set. 1t is entirely possible that
including the alternate solution in the set would lead to a better solution than that possible with the

current k-th best solution. Consequently, as subproblems are solved, if a solution of equal value to

thek-th best is dropped from the set, then?? is calculated using, not the value of thek-th best

6-10

solution (i.e., the worst solution in the set), but the value of the next worst solution in the set.
Specifically, if Solutions k-1, k-2,..., k-n (n < k) all have the same objective function value as the
k-th best solution and if Solutionk-n-1 has a better objective function value than thek-th best

solution, then the objective function of Solutionk-n-1 is used to calculate ? o If al solutions of

equal value to thek-th best solution are in the set, then 7 is calculated using the value of thek-th

best solution.

Solving the Subproblems. The first step in the Sweeney-Murphy Decomposition process is

solving the subproblems to find their respectivek-best solutions. The decomposition of the mult
project MRCMPSP-GRP/EXP leads to subproblems which are instances of the single-project
MRCPSP-GRP/EXP, which can be solved using the approach developed in Chapter V. Thisis

true with one exception: SubproblemP+1.

While Subproblems 1 through P are actual single projects, Subproblem P+1 is of an entirely
different nature. Subproblem P+1 consists of two types of variables: (1) the variable representing
the execution time of the programlevel terminal activity and (2) the variables representing the
program-level expediting resources. These variables appear in the coupling constraints of both (P)
and (MP) to (1) tie the program completion time to the scheduled execution times of the other
activities and (2) determine the quantity of program-level expediting resources required to make a
combination of solutions from Subproblems 1 throughP (the real project subproblems) resource
feasible.

Subproblem P+1 contributes to the programlevel objective function by assessing a penalty
against the program based on the execution time of the progrardevel terminal activity (the
program completion time) and by charging the program for the programlevel expediting resources
used by the projects.

When separated from the coupling constraints, though,the independent SubproblemP+1
becomes arather trivial problem (see Chapter |11 for the zereone formulation). Its constraints
consist exclusively of the upper bound, D (program horizon), on the program completion time and
the upper bounds on expeditingresource use. Consequently, regardless of the penalty associated

with program completion, or the cost of expediting resources, or even the choice of.l, the optimal

solution to SubproblemP+1 will always be zero for all variables. Of course, this optimal is

infeasible to (MP), and thus (P), for any program with a non-zero duration (a basic assumption).

6-11

Like the other subproblems, a set of k-best solutions could be generated for SubproblemP+1, but
this would undoubtedly require an exremely large k just to provide a solution that makes (MP)
feasible.

Another option for dealing with SubproblemP+1 is to generate its best solutionson the fly.
This approach is suggested by Sweeney and Murphy for subproblems that arerich in near-optimal
solutions (Sweeney and Murphy, 1979: 1134). Simply stated, rather than contributing a set ofk-
best solutions from which the master problem can draw, the subproblem is incorporated directly

into arevised master problem, (MP2) (shown in Figure 64).

Solving the Master Problem The Revised Master Problem (MP2) is solved using an implicit

enumeration algorithm. Implicit enumeration is used primarily for two reasons. First, the
procedure used to construct master problem solutions allows for quick and eficient fathoming of
large sets of infeasible or dominated subproblem solution combinations. Second, the algorithm

efficiently produces a set of k-best solutions to the master problem.

The agorithm attempts to build feasible master problem solutions by cambining solutions from
the subproblems. Starting with the first solutions of each subproblem, the algorithm moves from
subproblem to subproblem, adding on a new subproblem solution until either (1) one solution from
each subproblem has been combined to fam a complete, feasible solution to the master problem or
(2) at some point in the building process, the current partial solution is found to be infeasible or
dominated by thek-th best solution to the master. In either case, the algorithm backtracks, fist to
untried solutions to the current subproblem, then to previous subproblems andtheir untried
solutions.

When a complete, feasible solution to the master problem is found, it is compared against the
current k-th best solution to the master. |If the newsolution is at least as good, it is added to the
solution array and the k-th best solution isremoved. Complete solutions are stored in & x (n +1)
x 2 array, where k is the number of best solutions desired andn is the number of activitiesin the
problem. For each activity, the solution array stores two values: (1) its execution mode and (2) its
dtart time. The objective function value is stored in Row 0O of the array. The solution array is
initialized with large values.

Note that while the above approach yields the k-best solutionsto (MP), there is no guarantee
that these are thek-best solutionsto (P). The SweeneyMurphy Optimality Conditions guarantee
only that the best solution to (MP) is optimal to (P). Thek-best solutionsto (MP) providek-good

6-12

solutionsto (P), but these are not thek-best solutionsto (P) unless all feasible solutions to the

subproblems are included in (MP); in other words, if (MP) equals (P).

Revised Master Problem

Problem (MP2):
K, K, Kp
Minimize ? (c,yy)?1 2 ? (cy5)252 .2 2 (CoYr)26 ? CopXpny (16)
k21 k21 k21
Subject To
K1 K, Kp
P (AYPE? D (AYERE2 2 D (AWSRE? ApXew 2D, (17)
k21 k21 k21
Ky
?2 ?7 ©)
k21
Kz
? %
ko1 ?7?
Ke
? %
k21 ?7?
BpoXpon ?Dpyy (3)
K
220,17 ?2pk (10)
where

K, ? the number of feasible solutions of Subproblemp,
y'; ? arank-ordered feasible solutionk of Subproblem p,

?'; ? 1if solution k of Subproblem p is selected; O, otherwise.

Figure 6-4. Revised Sweeney-Murphy Master Problem

As an example, consider the four-project problem described in Appendix F. This problem was
solved to find the 1000-best solutions using the Scheduler and then resolved to find the 1000-best
solutions using the decomposition approach. In the case of the decomposition approach, each

subproblem provided (to the master) a set of their 1000best solutions, leading to a master problem

6-13

with atotal of 1000" possible subproblem combinations. Both approaches found the same optimal
(asingle optimal in this case) with an objective function value of 19,680. However, the 1000th
best solution from the Scheduler had a value of 24,752 while the 1000th best solution from the
decomposition approach had avalue of 32,760. In fact, the set of 1000 solutions passed up from
each of the subproblems to the master problem did not contain a combination leading to a solution
of 24,752 (the 1000-th best Scheduler solution). The closest solutions found by the decomposition
approach were 24,704 (ranked 99) and 24,769 (ranked 100).

Consequently, there is a tradeoff between the time required to obtain a set ok solutions and
the quality of those solutions. If finding an optimal solution quickly is the primary goal, and
obtaining a set of good aternative solutions is only secondary, then the decomposition approach
should be used. If, however, a set ofk-best solutionsis required, then the Scheduler from Chapter

V isamore appropriate solution approach.

Assumptions. Before proceedng to the notation and description of the Decomposition

Algorithm, note the following assumptions.
1. Subproblems corresponding to the projects, ProblemsSP, "?"%, are solved in the order in

which they are numbered.

2. Subproblem solutions are rank ordered, k ? 1 being an optimal.

Notation The following notation is used in the Decomposition Algorithm.

Problem Types:

SP, 7?2t = the subproblem corresponding to Projectp

Indices:
[= aproject activity
m = themode of activity i
S = the scheduled start time of activityi
kp = the counter indicating the current solution of Subproblemp

6-14

Solution Parameters:

P = thetotal number of subproblems
K, = thenumber of best solutions from Subproblemp
K, = thedesired number of best solutions to the master problem
z,, = theobjective function value of thek-th solution to Subproblemp
Z, = theobjective function value of thek-th solution to the master problem (MP)
?, = thedifference between the worst and best solutions to Subproblenp
[= theLagrangian multipliers associated with the coupling congraints
Activity Sets:
O, = theset of activities which precede activityi
Ni = theset of activitieswhich have adirect start-start lag relationship with activity i
M K = the set of mode assignments associated with solutionk
Skp = the set of start time assignments associated with solutionk
Resource Sets:
QR = theset of programlevel renewable resources
Q" = theset of pragram-level nonrenewable resources

Time-Related Parameters:

d,, = theduration of activityi in modem
?’}}i” = the minimal start-start lag time between activitiesi and j
omax —

2 the maximal start-start lag time between activitiesi and

Cost Parameters:

cli“p = cost of nonrenewable expediting resources required by kp
cfp = cost of renewable expediting resources required by kp
C, = theaccumulated cost of the current solutions of Subproblems 1 throughp

p

6-15

Resour ce-Related Parameters;

R

r the units of renewable resourceq required by activity i in modem

imq

Rffqt = the units of renewable resourceq remaining in timet after projects 1 throughp have
been added to the program schedule

H Fqut = the units of expediting, renewable resourceq remaining in time t after projects 1
through p have been added to the program schedule

mq = theunitsof nonrenewable resourceq required by activity i in modem

qu = units of nonrenewable resourceq remaining after projects 1 throughp have been

added to the programschedule

HN = theunits of expediting, nonrenewable resourceq remaining after projects 1 throughp

have been added to the program schedule

., = thetotal demand by solution kpfor nonreneweble resourceq

=
1]

the total demand by solution kpfor renewable resourceq at timet

Decomposition Algorithm The Decomposition Algorithm is now outlined, followed by a

narrative description of the scheme.

Decomposition Algorithm

Sep 0 Initialization.

Obtain W, aninitial value of p.
Set Z, ? anarbitrarily large number (999999 in this study) for 1?2k ? K, .
Set K, = theinitial number of solutions to generate for Subproblemsp,1? p? P.

Set ? ? anarbitrarily large number (e.g., 999999).

6-16

Sepl

Sep 2

Sep 3

Sep 4

Sep 5

Sep 6

Sep 7

Set 7, ? an arbitrarily small, non-negative number (e.g., 0) for 1? p? P.

For psuchthat ?,?? , solve SP, ':H': to obtain the K, -best solutions for

Subproblemsp, 1? p? P (theproject-related subproblems). For each subproblem,
record if a solution equal to thek-th best is dropped from the set ofk-best.

If, for subproblemp (17 p ? P), asolution with value equal to that of solutionK , is

?z

r
b
pr 1. Zpl .

dropped from the set of K, -best solutions, let ? | ? max .)zpk Z,

' 2 7 ?
Otherwise, let 7, 2z ?z,.

P
Record LB1??? z,,. Setp=0and C, ?0.

p21

Letp=p+2landlet k, ?0.
Let k, 7k, ?1. If k, ? K, goto Step 15.

Test for Dominance. Test whether C,,,; plus the objective function value of
subproblem solution kp, zkp , isdominated by the value of the K, -best master
problem solution, Z, . Thus,if Z, ?C, ? Z, ,» subproblem solution k, cannot

lead to an improved master solution, so go to Step 5.

Nonrenewable Resource Feasibility. Determine if kp is feasible to the nonrenewable

resource constraints (i.e., the sum of regular and expediting nonrenewable resources is

‘]P
sufficient for the nonrenewable resource demand of solutionk). Let rk': ? 9 ri,'f]q
i?71
m’-l’Mkp

be the total demand by solution kp for nonrenewable resourceq. If

rl?2RE ?2HY
P

bo1q g 207 Q", then k, is nonrenewable-resource feasible. 1 not

feasible, go to Step 5.

6-17

Sep 8

Sep 9

Test for Dominance. Test whether C,,; plus the objective function value of

subproblem solution kp v Zs plus the cost of nonrenewable expediting resources
required by kp, cli“p , isdominated by the value of the K -best master problem

solution, Z . Thus,if Z, ?C.,,? 7 ?cli“p , subproblem solution k;, cannot lead

to an improved master solution, so go to Step 5.

Generalized Precedence Feasibility. Determine if subproblem solution kp isfeasible

asto the programlevel generalized precedences. For each activityi in p which has a
generalized precedence relationship with an activityj in any of projects 1 throughp-1,
the following conditions must be true for feasibility. 1f not feasible, go to Step 5.
(Note: these are the same generalized precedence conditions used in the Scheduler and
discussed in Chapter V.)

Ay 20 Ay 20

$ 2?8 ?2djn,?i? 0 s ?5;?2dj, ?L?2j?0
jm; min . min .
j s ?s;??20",?2j?C s ?2s; 220" ?21,?]2C

o
5?5, 2?2™,2j?C,

o

o .
?s,?2?™ 21,2j?C,

57?5,?L?]?0,

%]

?25,,?2j?0,
im; min . min H
im, s ?s; 2?0 21,2j2 C, s ?s;??7",?2j?C

max H max H
5?5, 272" 21,2j2C, 5?5, 2?2™,2j?C

B

Sep 10

Renewable Resource Feasibility. Determine if kp is feasible to the renewable resource

congtraints (i.e., the sum of regular and expediting renewable resources in each period

6-18

Sep 11

Sep 12

is sufficient for the renewable resource demand of solution kp). Let

Rl ? ’? r} . bethetotal demand by solution k_for renewable resourceq in time
kot HE 1] p

?1
ey s:’7d 2?

m”Mkp
575,

periodt. If 12, 2 RS, 2HR, 202Q% 52t 25, , 5,5, 2S , thenk, is

renewable-resource feasible. 1f not feasible, go to Step 5.

Adjust Resources and Costs. The new partial master solution schedule formed by

adding subproblem solution kp is feasible and may lead to an improved master

solution. Adjust programtlevel resource availabilities and the master schedule cost as

follows;
N H N
» R ‘SRpolq 21 if T Rp,,lq‘B 2 og2 0
::3 oif rkpq ? p,,lq:
7 H;‘qu N oif r ”’1‘*87qu
’3H p?lq * Rp”lq ’)rkpq if rk pd Rp°lq=3
’BRRQ 2rl itk ?RY, 3
7 Rl?qt 27 P k%f ot E’;th')?qu s?t?s ,7§ S, ? %p
;.3 I rkpqt p’7lqt8
3 0if 1y ? R 3
n ngt > od P q,),,q,,Q sl?t‘?SJ %

' R R H R
8H p?l,qt 7 Rp?l,qt 7 rkpqt If rkpqt ' I:ap?l qta

N R
7 Cp?Cp?l?ckp?ckp

Test for Dominance. Test whether C, is dominated by the value of the K, -best
master problem solution, ZKO. Thus, if ZKO ? Cp, subproblem solution kp cannot

lead to an improved master solution, so remove subproblem solutionkp from the

6-19

Sep 13

Sep 14

Sep 15

Sep 16

Sep 17

current partial solution , adjust resource availahilities and the partial solution cost, and

go to Step 5.

If subproblem p is NOT the last subproblem, p? P, go to Step 4. Otherwisg, this
complete solution is as good as the current K, -best solution, so add this solution to the

set of K, -best and re-rank solutions.

Adjust Resources and Costs. Remove subproblem solution kp from the current master

schedule. Adjust resource availahilities and the master schedule cost. Go to Step 5.

Backtrack by Subproblem. Let p? p?1. If p?1, goto Step 5.

Test for Optimality. (Notethatp=0.) Let UB? Z,. Calculate ? 2UB? LB"". If

?,?7? for1? p? P, then Z, isoptimal. Stop. Algorithm complete.

Z, isNOT optimal. For p such that ’?p ?? ,increase K . the number of solutions to

generate for Subproblemp. Go to Step 1.

Step 0 of the algorithm is an initialization step. In this step, an initial value of the Lagrangian

multipliers, |, are obtained using one of the methods described later in this chapter. The method

used to obtain the multipliers may affect the performance d the algorithm but does not impact the

flow of the algorithm itself.

Step O is also used to set initial values for four sets of variables. The initial valuesfor Z, ,

1?7k ? K,, are set to arbitrarily large numbers. These numbers are replaced by the objective

function values of feasible solutions to the master problem as these solutions are generated. The

initial valuesfor K, 1? p? P, are set according to a scheme for choosing hav many solutions

to generate for each subproblem, also discussed later in the chapter. Finally, alarge value for ?

and small valuesfor ? ;, 1?7 p? P, are set. While these values are meaningless & this point in

6-20

the algorithm, they are set necessarily but simply to satisfy the condition in Step 1 which invokes a
first-time solution of each subproblem to generate sets ofk-best solutions.

Step 1 comprises solution of the subproblems to generate set<of k-best solutions. The first
pass through this step requires that al subproblems be solved (hence, theinitial values for the
deltas set in Step 0), while subsequent passes through the step require the solution of only those
subproblems which fail the optimality test of Steps 15 and 16.

Step 2 calculates a (meaningful) ? | for each subproblem based on the solution sets generated

in Step 1.
Step 3 records the lower bound on the optimal solution to (P) as the sum of the optimal
solutions to the subproblems. Thisstep also setsp=0and C, ? 0.

Step 4 increments counter p by one so that in the first passp = 1 and the algorithm begins
constructing a solution to (MP) by adding a candidate solution from Subproblem 1. {Vhile this

step identifies which subproblem is the current subproblem, the next step identifies which candidate

solution from the current subproblem to add.) kp is also set to zero in this step.

Step 5 incrementskp by one. Inthe first pass through this step, kp =1 and the algorithm

begins constructing a solution to (MP) by adding Solution 1 to Subproblem 1.

Asthe algorithm builds a solution to (MP) by incrementally adding a solution from each
subproblem, Step 6 tests whether or not the cost of the previous partial solution plus the objective
function value of the candidate subproblem solution being added exceeds the objective function
value of the k-th best solution currently recorded for (MP). If so, the partial solution being
constructed cannot lead to an improved solution to (MP), and the candidate solution to the current
subproblem is fathomed by returning to Step 5 where the next candidate solution to the current
subproblem isnominated. Note that rejecting a candidate solution at this step requires no
accounting for resources or costs, Since no resources or costs have been charged yet for adding this
solution. Consequently, this simple dominance test saves potentially considerable tine otherwise
required for charging and subsequently refunding resources and costs for an unproductive
candidate solution.

If thetest at Step 6 is passed, Step 7 determines if there are sufficient nonrenewable resources
(regular plus expediting) available to add the candidate solution. If not, the candidate solution is

rejected by returning to Step 5. Note that no resources or costs are charged at this step, either, in

6-21

order to save the time otherwise required to account for resources and costs associatesvith a
solution which may be infeasible or unproductive.

Step 8 builds upon the feasibility test in Step 7. Step 7 determined that there are sufficient
regular plus expediting nonrenewable resources available to make the candidate solution feasible.
However, if expediting resources must be used, the cost of those resources may make the candidate
subproblem solution too costly. If so, the candidate solution is fathomed by returning to Step 5.

Steps 9 and 10 continue testing the candidate solution by che&ing for precedence and
renewable resource feasihility, respectively. If at either step the candidate is determined to be
infeasible, the solution is fathomed by returning to Step 5.

Once the algorithm has reached Step 11, it has determined that the candilate solution to the
current subproblem is feasible to the precedence congtraints as well as to the renewable and
nonrenewable resource limitations. It has also determined that the cost of the previous partial
schedule plus the objective function value of the candidate solution plus the expediting
nonrenewable resource costs required to add the candidate solution do not exceed the currently
recordedk-th best solutionto (MP). Therefore, Step 11 adds the candidate solution to the previous
partial schedule by charging its resource requirements against the available resources and by
adding its associated costs.

Up to this point, however, no dominance tests of the candidate solution included the cost of
expediting renewable resources. Step 12, therefore, peforms one final dominance test on the new
partia solution which includes the cost of expediting renewable resources required by the candidate
solution. If the new partial solution cannot lead to an improved solution to (MP), the candidate
solution is removed from the partial solution, resources and costs are adjusted, and the algorithm
returns to Step 5 where the next candidate solution is considered.

If the new partia solution is feasible and is not dominated by thek-th best solution to (MP),
then Step 13 checks to see if a solution has been added by each subproblem. If not, the algorithm
returnsto Step 4 wherep is once again incremented by one and candidate solutions from the next
subproblem are considered. 1 a solution from each subproblem has been added, then the new
partia solution is, in fact, a complete solution to (MP). This solution is added to the set of
solutions to (MP) and the set of solutionsis reranked from best to worst.

Once the complete solution has been recorded, the last subpoblem solution to be added is
removed (in Step 14) by adjusting resources and costs and returning to Step 5.

6-22

When returning to Step 5 from any other step, the next rankordered solution to the current
subproblem becomes the next candidate solution. |If, havever, all rank-ordered solutions to the
current Subproblem p* have been checked in context of partial solutionp*-1, then the algorithm
proceeds to Step 15 where it backtracks by subproblem. In other words, Subproblenp*-1
becomes the current subproblem. If p*-1 is greater than or equal to one, the algorithm returns to
Step 5 where the next rank-ordered solution to Subproblemp*-1 becomes the new candidate
solution. In thisway, the algorithm implicitly enumerates every possible combination of the
subproblem solutions.

If, at Step 15, p*-1 equals zero, then all combinations of subproblem solutions have been
implicitly enumerated. Therefore, an optimality test is performed to determine if an optimal

solution found for (MP) is optimal to (P). If so, thealgorithm terminates successfully. If not, K,

for each subproblem p violating the optimality condition isincreased (in Step 17), and the
algorithm returnsto Step 1 where larger sets of best solutions are generated for each of the
violating subproblems. This marks the beginning of the next iteration and the algorithm proceeds
as before.

Notethat if the optimal is not found on the first iteration, the array of master solutionsis not
reinitialized to large numbers. The solutions with which it was previoudly filled during the first
iteration remain in the array. This provides a tighter upper bound and faster fathoming for future

iterations.

Correction to SweeneyMurphy Approach. The solution approach proposed by Sweeney and

Murphy, and implemented in the Decomposition Algorithm above, hinges upon iteratively adding
subproblem solutions to the master problem until the optimality criterion (provided in the Sweeney
Murphy Optimality Theorem) is met. The use of the SweeneyMurphy Optimality Theorem asthe
one and only stopping criterion suggests reliance on the theorem as a necessary condition for
optimality. Such use of the theorem, however, isinappropriate. While the theorem provides a
sufficient condition for optimality, it does nd, in fact, provide a necessary condition (see counter
example below). In such cases, the agorithm may terminate without clearly indicating the
optimality of the solution. If agiven problem meets the sufficient condition in Step 12 of the
Decomposition Algorithm, the algorithm stops with the result that the current optimal solution to
(MP) isoptimal to (P). If, on the other hand, the given problem does not meet the sufficient
condition in Step 12, one cannot say if the current optimal solution to (MP)is optimal to (P) or not.

6-23

One can continue with further iterations of the algorithm in hopes that the sufficient condition will

eventually be met, but one of three realities will certainly be faced:

1. Thealgorithm iterates to a point where the sufficientcondition is met.

2. Theagorithm terminates prematurely without the sufficient condition met and without
knowing if the current optimal to (MP) is optimal to (P). However, the current optimal to
(MP) isfeasible to (P), since (MP) is arestriction of (P), so the optimal to (MP) may be
treated as a heuristic solution to (P).

3. Theagorithmisalowed to iterate to a point at which all feasible solutions of all
subproblems have been generated, but the sufficient condition is still not met. In this case,
(MP) is equivalent to (P) and one can conclude that the optimal to (MP) must be optimal
to (P), but this determination is made without the SweeneyMurphy Optimality Theorem
being met.

In the third case above, optimality of (P) can be established without the suficient condition
being met, but the cost of generating all solutions to all subproblems may be high (perhaps higher
than solving the problem without decomposition). One would, therefore, like to find a tighter
necessary condition than the generation of dl subproblem solutions. Thisis a subject for further
investigation.

Consider, now, the following example which counters the use of the SweeneyMurphy
Optimality Theorem as a necessary condition for optimality. The example consists of a four-
project program (see Figure 6-5). Each project has a dummy start activity (AS, BS, CS, and DS,
respectively). The dummy start activities have no duration, no cost, and use no resources. Each
project also has two (numbered) activities with durations, costs, and resurce use (project and
program-level). Each project has aterminal activity (AT, BT, CT, and DT, respectively) which
has no duration and uses no resources, but each terminal activity has a cost which represents the
project completion cost. Finally, theprojects are tied together by a dummy start activity (S) and a
terminal activity (T), neither of which has a duration or uses resources. However, terminal activity
(T) has a cost representing the program completion cost.

The datain Table 6-1 show that each numbered activity has a duration of one unit. Each
numbered activity also requires one unit of a renewable resource specific to their respective
projects. Thereis sufficient project-level resource availability that project-level resources do not

limit the scheduling process (any precedence feasible project schedule is also resource feasible).

6-24

Figure 6-5. Sweeney-Murphy Optimality Theorem Counterexample Diagram

Table6-1. Sweeney-Murphy Optimality Theorem Counterexample Data

Project | Activity | Duration | Early Base | Per Period Project Program
Start (ES)| Cost | Incremental | Renew Renew
@ ES Cost Resource | Resource

A Al 1 1 1 1 1 1
A2 1 2 1 1 1 1
AT 0 2 1 2 0 0

Limt2 |
B Bl 1 1 1 1 1 1
B2 1 2 1 1 1 1
BT 0 2 1 2 0 0

Limt2 |
C C1 1 1 1 1 1 1
C1 1 2 1 1 1 1
CT 0 2 1 2 0 0

Limt2 |
D D1 1 1 1 1 1 1
D2 1 2 1 1 1 2
DT 0 2 1 1 0 0

Limt2 |
T T 0 2 1000 1000 0 0

Limit O
Limit 4

6-25

When the problem is decomposed, each project becones a separate subproblem. The only
limiting constraints within each subproblem are the precedence constraints €.g., A1 precedes A2,
A2 precedes AT). The cost of a subproblem schedule is the numbered activity costs (which depend
on when the activities ae scheduled) and the project completion cost.

A fifth subproblem is composed of the program terminal activity. The only constraint within
this subproblem (when severed from the programlevel constraints) is that activity T must occur no
earlier than its early start time (Time 2).

Figure 6-6 shows three alternative schedules for the program. Note that the representation of
the project and program terminal activitiesis a straight vertical line lying between two time
periods. The line actualy falls at the back side of the time unit with which it is associated. For
example, if the program terminal activity T occurs at its early start time of 2, the line representing
the activity is on the border of time units 2 and 3. Note also that the program horizon$ 8 (the sum

of al non-zero duration activities).

6-26

Optimal Project Schedules Worst Project Schedules Optimal Program Schedule

("Independent” Projects ("Independent” Projects ("Dependent” Projects
Time Period Time Period Time Period

Sch Sch Sch

Cost|1 2 3 4 5 6 7 8 Cost|1 2 3 4 5 6 7 8 Cost|1 2 3 4 5 6 7 8
1 1 7 | 1 d=24 1 1
1 1 7 | 1] 1 | 11
1 13 1
1 1 7 | 1 d=24 1 1
1 1 7 | 1] 1 | 11
1 13 1
1 1 7 | 1 d=24 1 1
1 1 7 L 1] 1 L 1]
1 13 1
1 1 7 | 1 d=18 1 zl
1 2 7 L 2| 2
1 7 2

1000 | 7000 | d=6000 2000 |

ResDemand |4 5 0 0 0 0 0 O 0O 0 0 0 0O O 4 5 ResDemand |4 3 2 0 0 0 0 O
Res Avalil 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Res Avalil 4 4 4 4 4 4 4 4
" Violation Violation »
LB= 1012 Program Resource Limits Program Resource Limits UB= 2014 Program Resource Limits
(Not Enforced! (Not Enforced, (Enforced)

UB - LB =2014 - 1012 = 1002 > d for Projects A through D

Figure 6-6. Sweeney-Murphy Optimality Theorem Counterexample Chart

The first set of schedules in Figure 6-6 are the optimal subproblem solutionsif the program
level constraints are relaxed. Each activity starts at its early start time (including activity T). The
total cost of this set of solutionsis 1012; thisis the lower bound LB. The second set of schedules
is the worst subproblem solutions where every activity starts at its late start time. The importance
of this set of solutionsis that it defines the maximum possible value for the? of each subproblem
(the worst solution minus the best solution). These values are? = 24, 24, 24, 18, and 6000,
respectively. Note that ? for Subproblem D isless than that of Subproblems A, B, and C, because
the cost for delaying project completion is only 1 per time unit rather than 2 per time unit.

When program-level constraints are now considered, the set of best solutionsto the
subproblems do not form a feasible combination. Note that the demands for the programlevel

resource are marked inside the gray boxes representing the activities. The problem isthat the total

6-27

demand for the programlevel resource in Time 2 exceeds the availability of four. To resolve this
corflict, any of activities A2, B2, C2, or D2 could be shifted one unit to the right. The optimal
program schedule results from shifting Activity D2, because the cost of doing so is only two (one
for delaying D2 and one for delaying DT), while the cost of déaying any of the other activitiesis
three (only one for delaying the activity itself, but two for delaying completion of its corresponding
project).

Assuming all subproblem solutions are generated, the total cost of the optimal schedule to
(MP) and to (P) is2014. ThisisUB. So ? ?UB ? LB is 1002 which is larger than all
subproblem ? except for subproblem* T.” Hence, the condition of the SweeneyM urphy
Optimality Theorem is not met, but an optimal solution has been found.

Choice of k. One choice that must be made to implement SweeneyMurphy Decomposition is
the number of best solutions, k, to pass from each subproblem to the master problem. The smaller
k s, the less time spent generating the set of subproblem solutions. Ifk is small, the master
problem also takes less time to enumerate the combinations of subproblem solutions. Thereforek
should ideally be as small as possible, while assuring optimality.

On the other hand, thoughk should ideally be chosen as small as possible, the lower k is, the
higher the possibility that the algorithm may not find an optimal to (P) in the first iteration. If the
algorithm has to conduct subsequent iterations, overall solution time could increase significantly.
The only leveraging provided by theprevious iteration is that the previous subproblem solutions

can be used to partially initialize the arrays of subproblem solutions. If k; subproblem solutions
were generated in the first iteration and k, ? k; subproblem solutions are to be generated in the
second iteration, then the first k; rank-ordered positionsin the solution array are filled with the

previous set of best solutions and the remaining k, ? k; positions are filled with an appropriately

large value (e.g., 999999). Since fathoming of branches in the subproblem solver is based on the
value of thek-th best solution (an arbitrarily large value), even the leveraging from the previous
solutionsiis likely to be minimal. Consequently, the time required to solve the subproblemin
subsequent iterationsis most likely at least as long as the time to solve the subproblem in the first
iteration.

Another compounding factor is the possibility that only a subset of subproblems may need to
be resolved at a subsequent iteration, if any. Asaresult, ana priori attempt to find just the right

6-28

value of kisadifficult task at best. Theright choice is afunction of the time required to solve the
subproblems for a smaller set of solutions versus alarger set, the probability that a subproblem
will need to be resolved in a subsequent iteration (which also depends on the size of the set in the
previous iteration), and the amount of duplicative effort to solve a subproblem again for a brger
value of k. Of course, al of these values (the time to solve the subproblems for varying sizes ofk
and the probability that the sets of subproblem solutions of some given size will provide an optimal
combination) are dependent on the characteristcs (network complexity, resource strength, etc.) of
each subproblem and of the master problem. The implementer of SweeneyMurphy
Decomposition, then, must choose the initial value ofk based on experience, intuition, or empirical
analysisif time allows. An empirical analysis is provided in this study.

Figures 6-7 and 6-8 (repeated from Chapter V) provide some insight into the time required to
solve the subproblems for varying values of k. Based on values of k of 1, 10, 100, and 1000, these
figures show, respectively, the average time required per solution and the overall solution time for
each k. The marginal amount of time required to find one additional solution decreases
significantly as k increases. The resultant growth in overall solution time al flattens out. If one
isrisk averse, preferring to solve each subproblem for alarge enoughk so that iteration is not
necessary, then these results provide some assurance that ifk is larger than minimally necessary,

overall solution time does not suffer significantly.

6-29

Average Time Per Solution

14
.g 1.2 <
5
° 1
2% —e—Jobs = 10
57208 -
v S —eo—Jobs = 20
.E 2 0.6 —a—Jobs = 30
S 041 —=—Jobs =50
s
2 02
< \

0 ‘ -
1 10 100 1000
Best Solutions (k)
Figure 6-7. Average Time Per Solution
Overall Average Solution Times vs. k
6
% 5 /0
c
o
o 4 -
)
g3
=)
o 2
o
©
o 14
>
<
0 T T T T T
0 200 400 600 800 1000
Best Solutions (k)
—e— Ave to Completion —e— Ave to Optimal

Figure 6-8. Overall Average Solution Times Versus k

For the risk prone who iswilling to gamble multiple iterations to reduce initial subproblem
solution time, their payoff depends on the structure of the master probkm. If the master problem

contains no program-evel constraints, then the optimal subproblem solutions form an optimal

6-30

solution to (P). Inthis case, solving the subproblemsfor avery small k would be preferable. If,

however, the master problem is hidhly constrained, then alarge number of solutions from each

subproblem may be required even to find a feasible combination, not to mention an optimal one.
The section on testing, below, tests various schemes for choosingk based on the respective

difficulty of subproblems and the master problem.

Choice of Multipliers. A second choice required for implementation of SweeneyMurphy

Decomposition isinitial values for the Lagrangian multipliers. Multipliersin the subproblems are
acounterbalance tok. The better the multipliers, the fewer the subproblem solutions required to
find an optimal solutionto (P). The easier it isto generate thek solutions, the less important it is

to find the optimal multipliers (Sweeney and Murphy, 1979: 1133).

In the context of Lagrangian Relaxation, multipliers are used in the subproblem objective
functions to weight the importance of the coupling constraints and the scarcity of resources. If the
multipliers are zero, then the coupling constraints are ignored when solving tle subproblems. If the
multipliers are arbitrarily large, then the subproblems over-emphasize the coupling constraints,
leading to a solution which may be harmful to the possibly competing interests of the subproblem.
Good multipliers, by contrast, are most likely somewhere between zero and an arbitrarily large

number. Good multipliers influence the subproblems to provide solutions to the master problem

which lead to tight bounds on the optimal solutionto (P). That is,? ? UB ? LB’ is minimized.

The value of 1 which maximizes LB and which, therefore, provides the best choice of pt

is the solution to problem (D), the Lagrangian dual of (P) (shown in Figure 69).

Lagrangian Dual of (P)

Problem (D):

2 ?
max LB717? max min? ? %p ?uAp’&p ?Hb,[B X, ?b, X, ?Oandinteger?pg(lS)

u?20 u?0 p?0) p21

Figure 6-9. Lagrangian Dual of Origina Problem (P)

Sweeney and Murphy (1979: 1132) discuss the difficulty of solving (D) and suggest two
alternative approaches for choosing multipliers. Both are LRbased methods, using Lagrangian

6-31

duality theory common in the literature .g., Geoffrion, 1974; Fisher, 1981). One approach for

choosing [isto solve the LP relaxation of (P) and use the dua variables associated with the

coupling constraints. If it isinconvenient to solve the LP relaxation of (P), Sweeney and Murphy

suggest initialy setting L ? O, and then, after solving (MP) the first time, set pLto the dua

variables associated with coupling constraints in the LP relaxation of (MP). This second method is
used by Sweeney and Murphy in a sample problem, as well as by Deckro et al. (1991).
Unfortunately, neither approach can be used for the MRCMPSRGPR/EXP.

As previously mentioned, both approaches proposed by Sveeney and Murphy are LP-based.
Neither the subproblems nor the master problem of the MRCMPSRGPR/EXP are solved with LP-
based methods, so multipliers based on these approaches are not readily available. Still, it is
important to identify a means by which the master problem can influence the solutions provided by
the subproblems. For this, a more economic interpretation of the multipliersisin order.

Lagrangian multipliers are the dual variables associated with the constraints of an LP. When
an LP is solved to optimality, the dual variables, also known asshadow prices, reflect the increase
in the objective function value possible if the right-hand side of the associated constraint is raised
by one unit. That is, a shadow price is the marginal value of one additional unit of resource given
the current optimal solution. Hence, for binding constraints, shadow prices may be positive,
reflecting the maximum amount the decisionmaker should be willing to pay for an additional unit
of resource. For nontbinding constraints, shadow prices are zero, because thereis no value in
purchasing more units of aresource which is already in excess. The challenge in this study isto
estimate shadow prices without solving an LP.

Adding to the challenge of estimating shalow prices is the reality that the shadow prices must
be estimated before the problem is initially solved. In fact, the shadow prices need to be estimated
in order to solve the problem. Thisleads to the concept ofprovisional dual prices, proposed by
Baumol and Fabian (1964). Provisional dual prices reflect the marginal profitability of aresource
when used as prescribed in the current solution, not necessarily the optimal solution. The primary
difference between these and regular dualsisthat these gices may be negative (Baumol and
Fabian, 1964: 7).

If the Dantzig-Wolfe Decomposition approach could be used for solving the MRCM PSR
GPR/EXP, there would be an iterative process where the program setsinitial prices that it charges

the projects for progran-level resources. These prices arerecalculated each time the master

6-32

problem is solved and these new prices are passed to the projects. With SweeneyMurphy
Decomposition, good prices need to be initially estimated, especially since a single iteration waild
beideal. Inthissituation, the provisional dua prices are, in essence, aforecast of the value of
resources, since they must be estimated even before an initial allocation is made.

Since the goal of multipliersis to enable the program to impact the decisions made by the
projects, Baumol and Fabian suggest that:

The means to induce subdivisions to increase activities which produce external economies and
to reduce activities which produce external diseconomies is accomplished by the addition to
divisional earnings of a per unit subsidy or bonus of appropriate magnitude for every external
economy yielding output, and a per unit penalty on those products which involve diseconomies.
Baumol and Fabian (1964: 4)

Substituting project for subdivision, projects should be rewarded for using resources available
in excess and should be charged for using resources that are in high demand by other projects.
Since project activities have multiple modes of execution, it is difficult to knowa priori exactly
how much of any given resource a project will demand. Activities can also be scheduled in
multiple time periods, so it is difficult to knowwhen the resources will be demanded. The
remainder of this subsection is devoted to the proposition of four potential appoaches for choosing
multipliers, or provisional dual prices. Each approach istested in the next section.

The first two approaches for choosing multipliers are not elegant, but they are valid
approaches. Thefirst approach isto choose zero for all mulipliers and the second approach isto
choose an arhitrarily large value for the multipliers. As previously discussed, neither of these
approaches would be expected to perform well, but they do, in some sense, provide bounds by
which other approaches can be evaluated.

The third approach for choosing multipliersis based on the work of Nauss (1979). To
estimate the marginal benefit of resourcesin an IP, Nauss solves the IP to optimality and, then in
turn, varies the right-hand side of each resource constrant by one unit and re-solves the problem.
The estimated marginal benefit of aresource is then the difference between the optimal objective
function value of the original problem and the optimal objective function value of the problem with
the respectiveresource constraint varied. Obvioudly, if the MRCMPSP-GPR/EXP could be solved
to optimality easily enough to uses Nauss' method directly, the whole purpose behind finding the
multipliersin the first place would be moot. Nauss concept, though, can be wsed.

In what this work refersto as aModified Nauss Approach (MNA), the original problem (P) is
solved to find a feasible solution. The Scheduler developed in Chapter V is applied to (P), but is

6-33

stopped before completion. Termination of the Scheduler idriggered only after it finds at least one
solution and has run for some user-defined length of time. Use of the Scheduler as a heuristic for
these purposesis not only convenient, but is guaranteed to find a feasible solution, if one exists.
Drex| and Grunewald (1993) point out that, in general, heuristics may, especialy in the presence of
scarce resources, not even be able to find a feasible schedule. The Scheduler is designed
specificaly for this problem type and its use assures that a feasible sol utionsis found and that
multipliers can be calculated. The analysis in Chapter V also showed that the optimal solution to a
problem is generally found relatively quickly using the Scheduler (most of the computing time is
used to verify the solution), soarelatively good heuristic solution should be found.

To estimate the marginal benefit of nonrenewable resources, the regular availability of each
nonrenewable resource is varied, in turn, by one unit and (P) is resolved until the Scheduler
terminates according to the criteria previoudy selected. The difference in solutions represents the
marginal benefit of an additional unit of nonrenewable resource. (A similar approach was used by
Van Hove, 1998).

Renewable resources are more difficult because thereis not a single availahility for each
resource. In fact, each resource has a separate availability for each time period. Therefore, to
estimate the marginal benefit of a renewable resource, the regular availahility of the resource in
each period is concurently varied by one unit and (P) resolved until the Scheduler terminates
according to the criteria previously selected. The difference in solutions represents the total benefit
of an additional unit of nonrenewable resource in each time period. To avod over-estimating the
value of the resource per period, the total benefit is divided by the program duration in the heuristic
solution.

The fourth approach for choosing multipliers is based on the concept of Average Utilization
Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985). As
defined by Kurtulus and Davis, the AUF is calculated for each time period and isthe ratio of the
total amount of resource required to the amount available, based on atime only analysis of the
program. The value of this measure is, in principle, equivalent to the Resource Strength (RS) used
in previous chapters. However, RS is not generally known, so AUF must be calculated. RS was
used in the generation of problems, is a factor knownoutside the problem, and is the same for each
time period, by construction. AUF, by contrast, is usedwithin the problem where the value is not

knowna priori, but must be calculated. AUF may also vary between time periods.

6-34

The AUF Approach, then, consists of applying the Generalized Critical Path Method (GCPM),
developed in Chapter IV, to the problem. This provides the time only schedule of the program.
The next step isto calculate the total demand for each resource in each time period. Recall that the
GCPM uses the activity execution modes of least duration. These shortestduration modes,
however, are not necessarily the mode choices the projects would make from a resource
perspective. To assure that the AUF accounts for the possibly higher resource demandsof
aternative modes, an activity’ s demand for aresource is based on the highest possible demand
from among the activity’s modes. The AUFs for renewable and nonrenewable resources are, then,

calculated using the following equations:

P Jp
? ? mx '?r,rfm?
,;?1 5 12m2M,
2 2d..71?
AUF}R 7 785770 2q,t (19)

R

P Jp
2?2 max 7

* o 12meM,

AUF" ? o1 i1 . el (20)

where

AU Fq? = AUF for renewable resourceq at timet

AU FqN = AUF for nonrenewable resourceq

rirfm = requirement for renewable resourceq at timet by activity i in modem

ri,':q = requirement for nonrenewable resourceq by activity i in modem

RqFf = availability of renewable resource g at time't

RqN = availability of nonrenewable resource g

s = dtart time of activity i

= duration of activity i in mode 1

6-35

If AUF ?1 for some resource in some time period, the demand for the resource is no more
than its availability. The price charged by the program for this resource in this time period should
be zero.

If AUF ?1 for some resource in some time period, the demand for the resource exceedsits
regular availability and projects should pay a premium for using this resource. The price depends
on the degree to whichAUF exceeds one. If the total demand for the resource is less than its
regular plus expediting availability in the stated time period, the demand for the resource may be
met using expediting resources. In this case, the pricecharged by the program for a unit of this
resource is the cost of a unit of expediting resource (a value which is given in the problem
statement). If the total demand for the resource is greater than its regularpl us expediting
availability, then resource feasihility is only achievable through some combination of activity mode
changes and / or activity delays (in the case of nonrenewable resources, only mode changes).

The minimal cost combination of mode changes and activity delays could be calculated to
provide the estimated cost of resource feasibility in the given time period. Such a calculation
would have to account for theripple effect that the changes would have on subsequent activities
and time periods. If an activity is delayed, other activitiesmay also need to be delayed, adding to
the cost of the initial delay and possibly creating resource infeasibilities in future time periods.
Even if a simple mode change is made, the duration of the changed activity may increase, causing
the same effects on future activities and time periods caused by an activity delay.

Given the redlity that the resource demands (upon which the resource infeasible condition
results) is only arough estimate, the computational cost of calculating the minimal cost
combination of mode changes and activity delays would not likely prove worthwhile. Instead, the
cost of the timeonly schedule is calculated. The cost of modes and of expediting resource usage is
included in the time-only cost, but resource infeasibilities are temporarily ignored. In essence, it is
the resource infeasibilities in the time only schedule that force an alternate solution.

The original problem is, then, solved heuristicaly as in the Modified Nauss Approach, yielding
aresource feasible solution. Thedifference in the costs of the timeonly schedule and the resource
feasible schedule is calculated. This difference is the consequence of the resource infeasibilitiesin
the time-only schedule. Finally, the cost difference is partitioned among the resouces whose

AUF ? 1 and whose demand could not be met with expediting resources. The partitioning is based

on the relative contribution to resource infeasibility of the violating resources as follows:

6-36

3 . 3

PR 27 22 AUFq 22g,t (21)
g 37 ? AUFS?7? AUF'3
?t q q ?
3 " 3

pYl 22 22 A 224 (22)
3)? ? AUF;?7? AUF, 3)
2t ¢ q !

where

? isthetota cost difference between the time only and resource feasible schedules
pf;t is the price charged for renewable resourceq in time period t

p'; is the price charged for nonrenewable resourceq

In thisway, the program shares the cost of aresource feasible schedule by charging the
projects for using resources in time periods that cause resource conflicts in the time only schedule.

All of the proposed mehods for choosing multipliers are, to this point, theoretically based. It
remains to be seen under what conditions each method performs well. Testing of the approachesis

presented in a subsequent section.

Accderation Schemes

A number of optional schemes may be used to increase the speed of the decomposition
approach. The acceleration schemes presented here can be used together with the multipliers, but
the schemes are more direct approaches for bounding and constraining the subproblem solutions.
The Incremental Enumeration scheme also provides quicker solution of the master problem.
When Sweeney and Murphy presented their decomposition approach, they solved the master
problem to completion without testing solutions for optimality until the end. In fat, an optimal
solution may be found and proven to be optimal early in the enumeration. Thelncremental
Enumeration scheme makes a more proactive use of the optimality conditions to find and confirm

an optimal solution before completely enumerating the master problem.

6-37

Subproblem Solution Bounding This scheme is based on finding a good solution to the

origina problem (P) before the subproblems are solved. With a good solution to (P), upper bounds
on the subproblem solution values can be determined and wsed to initialize the subproblem solution
arrays. The upper bounds permit faster fathoming of unproductive subproblem solutions than the

arbitrarily large values with which the solution arrays would otherwise be initialized.

This option is executed by first finding a heuristic solution (HS) to (P). The Scheduler is used
for this purpose as was previously done for finding Lagrangian multipliers. A minimal cost for
each subproblem isthen calculated. A minimal cost is easily obtained by using the early start
times (based on the GCPM) of each activity in the subproblem. Using the minimum base and
incremental mode costs possible for each activity (.e., the minimum from among the modes of the

activity), the mode costs for al activities, starting at their erly start times, are added. This early-

start-time (EST) schedule may not be resource feasible, but it does provide a minimal cost, z'SST ,
for Subproblemsp, 1? p? P.
Finally, an upper bound, UB,,. , on the objective function value for subproblemp* is obtained
by subtracting the sum of the early-start-time schedule costs, z'SST , for the other subproblems,
p? p*, fromthe heuristic solution, HS, to (P). That is,

UB, ? HS? ? 255,
p?p*

As solutions are generated for Subproblemp*, any solution greater than UB,. is fathomed since

such a solution would yield a program cost greater than the heuristic solution to (P) previously

found.

Series Approach. Since subproblems are solved in series (vice in parallel), information

obtained from thek-best solutionsto Subproblems 1 throughp-1 can be used when solving
Subproblem p. The goal isto eliminate from the set of k-best solutions to Subproblemp as many
solutions which would not be feasible to (P) when used in concert with any of the solutions to

Subproblems 1 through p-1.

Three types of information obtained from Subproblems 1 throughp-1 can be used when
solving Subproblem p: an upper bound on the objective function value, reduced activity start time

windows, and constraints on resource use. Thisinformation is obtained and used as follows:

6-38

?? Upper Bound on Objective Function Value. As with theSubproblem Solution Bounding
scheme above, an initial heuristic solution to (P) can be obtained. Once Subproblems 1
through p-1 have been solved, the best solution values to Subproblems 1 throughp-1 can
be added to the value of the earlystart-time schedules of Subproblemsp+1 through P.
This sum can be subtracted from the heuristic solution value, HS, to obtain a new upper
bound on the solution top. When solving Subproblem p*, the upper bound on the

objective function value is given by

UB, ?HS? ? 2,2 ? .
p?p* p?p*

?? Reduced Activity Start Time Windows. Thek-best solutions to each of Subproblems 1
through p-1 can be compared to find the earliest time (within the set ofk-best solutions)
that each activity in the subproblem starts. The latest start time of each activity can be
found in like manner. Before solving Subproblem p, the early and late start times for
activities in previoudy solved projects are fixed and the GCPM used to calculate new early
and late start times for Subproblem p. Doing so reduces the number of solutionsin the set
of k-best solutions to Subproblem p which are precedence infeasible when used in
combination with the solutions to Subproblems 1 throughp-1.

?? Congtraints on Resource Use. The limitations on programlevel resources can be directly
considered when solving each of the subproblemsto reduce the number of subproblem
solutions which are resource infeasible at the programlevel. To do so, the set of program
level resources can be added to the set of projectlevel resources in each subproblem. The
full complement of regular and expedting resources is initially made available to each
subproblem, and there is no charge to the subproblem for using expediting resources.
Program-level resources, therefore, do not impact the cost of a subproblem solution, but
serve only to eliminate subproblem solutions which cannot possibly lead to feasible
solutionsto (P). Once Subproblems 1 throughp-1 have been solved, the minimal usage of
program-level resources from among thek-best solutions to each subproblem is used to
decrement the availahility of these resourcesto Subproblemp. Asaresult, each

subproblem isincreasingly more constrained by the program-level resources and its set of

6-39

k-best solutions provides a higher percentage of solutions which are resource feasible when

used in combination with the solutions to the previous subproblems.

Incremental Enumeration Each time a feasible master problem solution is found, recalculate

? and the subproblem deltas, ?p , and test for optimality. In this case, however, the’?p for each

subproblem is calculated using the current subproblem solution rather than thek-th best solution to
that subproblem. The advantage of this approach isthat if the feasible master problem solution is

an optimal solution to (P), this test might prove the solution to be optimal without having to

implicitly enumerate all k, ?k,?k,? ?Kk, possible subproblem solution combinations. Note

that failing the optimality test at this point does not imply that the current feasible solution is not
optimal, only that enumeration of solution combinations must continue until optimality can be
established. Note, too, that this option is useful only if the primary consideration is to find an
optimal solution rather than finding the k-best solutionsto (MP). While this option leads to an
optimal, it may terminate before thek-best solutions to (MP) have been found.

Test Problem Design

The experimental design for testing the approaches presented in this chapter can be dvided
into two parts: theproblem design and the solution design. The solution design, or the manner in
which solution approaches are applied to the problems, is discussed in subsequent sectionsin
conjunction with the results of those approaches. This ®ction discusses the problems generated to
test the solution approaches.

Each problem used for testing can be defined in terms of its program structure, the difficulty of
its component projects, and the difficulty imposed by the programlevel constraints. These
problem characteristics are described below, followed by a discussion of how the characteristics

are combined to form a set of 54 test problems used throughout the remainder of the chapter.

Program Designs Five basic program structures are used for testing. These program
structures differ in the way projects relate to each other temporally and in the presence or absence
of program-level renewable and nonrenewable resources. The five program structures are depicted
in Figure 6-10 as Program A through Program E. In each depiction, temporal relationships are
represented by the network structure presented, where the blocks represent distinct projects and the

circles represent dummy start and terminal activities. Lines between projects (asin ProgramD)

6-40

represent generalized precedence between activities in one project and activities in another project.
The vertical bar labeled NR denotes the presence of programlevel nonrenewable resources while

the horizontal bar labeled RR denotes the presence ofprogram-level renewable resources.

Program A consists of a set of nearly independent projects. There are no progrardevel
resources and the projects are tied together merely by a dummy start activity and an end activity.
The projects, however, cannot besolved in isolation because the end activity represents the
completion of the program, which is dependent on the completion times of the projects. Decisions
made at the project level, consequently, impact the completion cost (and overall cost) incurred by
the program.

Program B consists of a set of projects which are related only by their requirements for
common, programlevel, nonrenewable resources. 1n the absence of (1) expediting resources at the
project and program levels and (2) maximum time lags between activities, this program becomes
the multi-project GMRCMPSP addressed by Van Hove (1998).

Program C builds upon Program B with the addition of programlevel renewable resources.

Program D is an extension of Program C, where generalized precedences béween activitiesin
different projects are added.

Finaly, Program E is, in some sense, a specia case of Program D. Program E has generalized
precedences between activities in different projects, but the precedences exist only between the
terminal activity of one project and the start activity of the next. Consequently, projects follow one
from another. Program E may also contain renewable resources controlled by the program, but
since projects do not overlap in time, these programlevel resources can be treated as though
passed down to the projects. The same cannot be said of programlevel nonrenewable resources

where their allocation to projects constrains the execution options of the projects’ activities.

6-41

A
X Nonrenew Res
X Renew Res
\{:|/ X Gen Precedence
B
v Nonrenew Res
N X Renew Res
R X Gen Precedence
C
v Nonrenew Res
N / Renew Res
R X Gen Precedence
D
v Nonrenew Res
) v Renew Res
r| v Gen Precedence
E v Nonrenew Res
X Renew Res
v Gen Precedence
R
o— "}

Figure6-10. Program Designs

Project Level Difficulty. The projects which comprise each program differ in their degree of

difficulty to schedule. Based on the results of Chapter V, six problem parameters were identified

6-42

as being significant factors in problem solvability. With the exception of number of activities, two
levels of each factor were chosen and partitioned to form anEasy set of parameters and aHard set
of parameters. (Number of activitiesis dealt with separately and discussed later.) Table 6-2
outlines the significant factors and thelevels chosen to form theEasy and Hard sets of parameters.
Note that fewer activity execution modes and fewer resources make easier projects, while higher
network restrictiveness and higher regular resource strength contribute to easier projects. The

parameters held constant for problem generation are outlined in Table 63.

Table 6-2. Project-Level Generation Parameters Which Vary

PARAMETER LEVELS
Designator "Easy" "Hard"
Number of Modes Per Activity 1 3
Project Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

Table 6-3. Project Level Generation Parameters Held Constant

PARAMETER Min Max
Job Duration, Maximum 10 10
Lag Fraction 0.20 0.20
Minimal Lag -2 2
Maximal Lag 4 8
Renewable/Nonrenewable Resource Factor 1.00 1.00
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty Increment 400 500
Base Mode Cost 50 100
Mode Cost Increment 50 100
Expediting Resource Cost 0 50

Program Leve Difficulty. Programs also differ in the difficulty of the program-level

constraints. Depending on the program structure being addressed and its corresponding features,
program-level generalized precedences and resources are generated to be eitheEasy or Hard.

Table 6-4 shows the programlevel parameters which vary and the values which define theEasy
and Hard sets. Note that the factor levels used to form theEasy and Hard sets were chosen based
on results of Chapter V. While fewer resources and higher regular resource strength should clearly

make for easier program-level constraints, it is unclear in advance of testing whether higher

6-43

program network restrictiveness really makes the problem easier or if it makes the problem harder.
If the problem were solved as a single super-project, higher network restrictivenesswould certainly
make the problem easier. On the other hand, the higher restrictiveness may make it more difficult
in the decomposition approach to find feasible sets of subproblem solutions. Since the exact
impact of program restrictiveness is not knowna priori, the values have been chosen consistent

with the results of Chapter V.

Table 6-4. Program-Level Generation Parameters Which Vary

PARAMETER LEVELS
Designator "Easy" "Hard"
Program Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

Table 6-5. Problem Design

Program Projects | JobsPer | Total Jobs | Project / Program Total
Structure Project Difficulty Problems

4 18 Easy / NA

A 4 8 34 Hard / NA 6

12 50

4 18 Easy / Easy

B 4 8 34 Easy / Hard 12
12 50 Hard / Easy
Hard / Hard
4 18 Easy / Easy

C 4 8 34 Easy / Hard 12
12 50 Hard / Easy
Hard / Hard
4 18 Easy / Easy

D 4 8 34 Easy / Hard 12
12 50 Hard / Easy
Hard / Hard
4 18 Easy / Easy

E 4 8 34 Easy / Hard 12
12 50 Hard / Easy
Hard / Hard

Total 54

6-44

Problem Generation With program structures designed and the characteristics of Easy and

Hard projects and programs defined, atotal of 54 programs were generded using PAGER
(described in Chapter 1V). Each program consists of four projects, all projects being eitherEasy
or Hard. Table 6-5 shows the design applied to problem generation.

Testing Results

Testing was conducted to:

1. Evaluate the aternate methodsof determining multipliers

2. Assess the performance of the acceleration schemes

3. Evaluate aternate choices of k

4. Compare the decomposition approach to the singleproject Scheduler from Chapter V.

All test problems were generated using the Program Attributes @nerator with Expediting
Resources (PAGER) presented in Chapter 1V and solved using a 750 MHz, Pentium |11 processor
with 256 MB of Random Access Memory (RAM).

Methods of Determining Multipliers The 54 test problems outlined in the previous section

were solved using each of the methods for determining multipliers. Each problem was solved to
find asingle optimal solution. At each iteration of the decomposition algorithm, 100 solutions
from each subproblem were generated. The problems were also solvedusing the single-project
Scheduler to find a single optimal solution. A solution time limit of 20 minutes per problem was

imposed to control the total time to solve al test problems.

Figure 6-11 shows the percentage of problems which were solved to optirality within the time
limit and the percentage which exceeded the time limit. The AUF method of determining
multipliers was most successful at solving the set of problems within the time limit, followed by
using no multiplier at al, then the MNA method, and the single-project Scheduler. Using an
arbitrarily large number for the multipliers was least productive.

For the problems which solved to optimality within the imposed time limit, solutions times are
reported in Table 6-6. Problem decomposition ledto more problems solved and generally faster
solution times than the single.project Scheduler, except when arbitrarily large multipliers were
used. When comparing just the multiplier methods, though, the resultsin Table 66 are mixed,
with no method clealy dominating the others. Using no multipliers at al had the best average

solution time, but it found fewer solutions (the number reported in theCount column of Table 6-6)

6-45

than the AUF method. The MNA method appears to be dominated by the AUF method iad by
using no mulitpliers, but further investigation is merited to determine if problem characteristics

effect the performance of each method.

Solution Results vs. Multiplier Type / Scheduler
100.0%
90.0% |
, 80.0%
E 70.0%
S
£ 60.0% A
S 50.0% -
S
£ 40.0% |
S 30.0% |
]
& 20.0% |
10.0% -
0.0%
Optimal Exceed 20 Min
Result
‘ W Scheduler ESMD(0) ESMD(99999) @ SMD (MNA) @ SMD (AUF) ‘
Figure6-11. Solution Results vs. Multiplier Type/ Scheduler
Table 6-6. Solution Time vs. Multiplier Type / Scheduler
Solution Time (seconds)

Approach Count Minimum Average Maximum Std Dev
Scheduler 31 0.00 66.75 1030.23 216.95
SMD (0) 38 0.02 38.81 724.00 144.12
SMD (99999) 12 0.02 61.89 724.04 199.68
SMD (MNA) 36 0.02 56.75 724.03 156.85
SMD (AUF) 40 0.02 67.02 960.06 207.34

Solution results are aso shown in Figure 6-12 versus the program designs. Program designs
correspond to and are numbered consistent with Figure 610. The program design with no
program-level constraints, Design A, was solved to optimality 100% of the time withinthe
20-minute time limit, while the design with renewable resources, nonrenewable resources, and
precedence constraints at the programlevel, Design D, was solved to optimality only 41.7% of the

time within the 20-minute time limit.

6-46

Solution Results vs. Program Design

100.0% -

90.0% A

80.0%
70.0% A

60.0% A

50.0% A

40.0%
30.0%

Percentage of Problems

20.0% A
10.0% A

0.0% -

A B C D E
Result
‘ m Optimal @ Exceed 20 Min ‘
Figure 6-12. Solution Results vs Program Design

Table 6-7 reports solution time as a function of problem characteristics. The table shows each
program design, the difficulty imposed by the program and project constraints (as discussed in the
previous section), and each multiplier approach. The corresponding count of and solution times of
problems solved to optimality within the time limit are shown. Again, no method clearly dominates
the others as one method solves more problems in some cases than other methods and solves fewer
problems in other cases.

Since no method of finding multipliersis better in all cases than the others, the AUF method is
used to determine multipliers for the remainder of testing since it succeeded at producing the most

optimal solutions within the imposed time limit.

Acceleration Schemes The set of 54 problems were solved with and without the acceleration

schemes, this time generating 1000 solutions from each subproblem at each iteration. Table 68
shows the number of problems that were solved to optimalty within the imposed 20-minute time
limit, as well as solution times. Using the acceleration schemes not only resulted in finding more
solutions, but the average solution time and standard deviation were smaller. Acceleration schemes
were, therefore, ugd in testing and are, in fact, represented in the results presented above for

multiplier methods.

6-47

Table 6-7.

Solution Time vs. Problem Difficulty

Solution Time (seconds)
Program Program Project Multiplier
Design Difficulty Difficulty Approach Count Minimum Average Maximum Std Dev
A NA Easy 0 3 0.03 0.04 0.06 0.01
99999 3 0.02 0.04 0.06 0.02
MNA 3 0.03 0.04 0.06 0.01
AUF 3 0.02 0.04 0.07 0.02
Hard 0 3 0.05 24597 724.00 338.07
99999 3 0.05 246.01 724.04 338.07
MNA 3 0.04 245.99 724.03 338.07
AUF 3 0.04 246.00 724.03 338.07
B Easy Easy 0 3 0.03 0.04 0.06 0.01
99999 1 4.32 4.32 4.32 0.00
MNA 3 0.04 0.05 0.07 0.01
AUF 3 0.04 0.05 0.07 0.01
Hard 0 2 114 7.37 13.60 6.23
99999 0 na na na na
MNA 1 114 114 114 0.00
AUF 2 1.14 7.40 13.66 6.26
Hard Easy 0 3 0.03 0.04 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.04 0.05 0.01
AUF 3 0.03 0.04 0.05 0.01
Hard 0 2 0.09 76.74 153.38 76.65
99999 0 na na na na
MNA 3 2.38 110.84 221.75 89.57
AUF 1 249 249 249 0.00
C Easy Easy 0 3 0.03 0.04 0.05 0.01
99999 1 0.04 0.04 0.04 0.00
MNA 3 0.02 0.04 0.06 0.02
AUF 3 0.02 0.04 0.06 0.02
Hard 0 3 0.28 185.44 546.21 255.13
99999 0 na na na na
MNA 2 0.30 299.47 598.64 299.17
AUF 3 0.29 203.08 598.62 279.72
Hard Easy 0 1 0.09 0.09 0.09 0.00
99999 1 0.05 0.05 0.05 0.00
MNA 1 0.05 0.05 0.05 0.00
AUF 3 0.04 327.34 960.06 447.49
Hard 0 1 2.10 2.10 2.10 0.00
99999 0 na na na na
MNA 0 na na na na
AUF 1 6.94 6.94 6.94 0.00
D Easy Easy 0 2 0.03 0.04 0.04 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 2 0.03 0.03 0.03 0.00
AUF 2 0.03 0.03 0.03 0.00
Hard 0 2 241 2.59 2.76 0.17
99999 0 na na na na
MNA 1 2.27 2.27 2.27 0.00
AUF 2 2.26 2.57 2.87 0.31
Hard Easy 0 1 0.03 0.03 0.03 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 1 0.03 0.03 0.03 0.00
AUF 2 0.03 153.15 306.27 153.12
Hard 0 1 0.41 0.41 0.41 0.00
99999 0 na na na na
MNA 1 48.16 48.16 48.16 0.00
AUF 1 5.30 5.30 5.30 0.00
E Easy Easy 0 3 0.02 0.04 0.05 0.01
99999 1 0.05 0.05 0.05 0.00
MNA 3 0.02 0.03 0.05 0.01
AUF 3 0.02 0.03 0.04 0.01
Hard 0 1 0.53 0.53 0.53 0.00
99999 0 na na na na
MNA 1 97.20 97.20 97.20 0.00
AUF 1 0.49 0.49 0.49 0.00
Hard Easy 0 3 0.02 0.03 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.03 0.04 0.00
AUF 3 0.03 0.04 0.05 0.01
Hard 0 1 3.13 3.13 3.13 0.00
99999 0 na na na na
MNA 2 9.38 112.05 214.72 102.67
AUF 1 9.26 9.26 9.26 0.00

6-48

Choice of k. Thetest set of 54 problems was again solved, now for varying levels ofk. The
number of solutions, k, generated by each subproblem was varied from 100 to 1000 to 10,000.
Figure 6-13 shows the percentage of problems solved to optimality within the 26minute time limit
for each level of k, while Table 6-9 lists solution time statistics for these problems. While more
problems were solved withk = 100, avalue of k = 100 did require, in some cases, more iterations.

Figure 6-14 shows the number of iterations required to find the optimal solutions for each level of

k.

Table 6-8.

Value of Acceleration Schemes

Solution Time (seconds)

Acceleraton

Schemes? Count Minimum Average Maximum Std Dev
No 28 0.01 92.33 846.48 227.91
Yes 34 0.02 50.59 903.07 193.39

Percentage of Problems

100.0%

Solution Results vs. k

90.0% A
80.0% A
70.0% A
60.0% A
50.0% A
40.0% -
30.0% A
20.0% A
10.0% A

0.0% -

Notethat in 9 cases, k = 100 required more than one iteration. Only one case ofk = 1000

required more than one iteration (it required seven iterations) anck = 10,000 never required more

Optimal Exceed 20 Min
Result
® k=100 @ k= 1000 O k = 10000
Figure 6-13. Solution Resultsvs. k

6-49

than oneiteration. Since there is a tradeoff ketween the reduced time to solve the subproblems for

fewer solutions and the risk of having to iterate more than once, solution times for the varying
levels of k need to be compared.

Table 6-9. Solution Timesvs. k

Solution Time (seconds)
Approach Count Minimum Average Maximum Std Dev
k =100 40 0.02 75.19 783.87 212.44
k =1000 34 0.02 50.59 903.07 193.39
k =10000 32 0.03 64.69 960.13 219.18

Table 6-10 shows solutions times vs. k, arranged by program design. The easiest program
design is Design A, having no program-level constraints. Since any optimal to each of the
subproblems is feasible, and thus optimal, to the master problem, generating a single optimal for
each subproblem would be sufficient for finding an optimal solution to the original problem. As

expected, the smaller k is, the faster the algorithm solves a problem for Design A.

Iterations Required vs. k
35

30 +

25 +

20 +

15 4

Number of Problems

10 A

1 2 3 4 5 6 7

Result
‘ ®k=100 @ k = 1000 O k = 10000 ‘
Figure 6-14. Iterations Required vs. k

6-50

For the other program designs, the resultsin Table 610 are not so dear since one vaue of k
may solve fewer problems than another value of k, but the average solution time for the problems

that were solved islower. To better understand the distribution of solution times, refer to Figure

6-15.

Table 6-10. Solution Time vs. k

Solution Time (seconds)
Program
Design k Count Minimum Average Maximum Std Dev
A 100 6 0.02 123.01 724.01 268.83
1000 6 0.03 133.16 734.06 269.74
10000 6 0.04 305.84 960.13 427.71
B 100 10 0.02 16.79 153.39 45.71
1000 8 0.02 0.23 0.96 0.30
10000 8 0.05 2.45 6.40 2.37
C 100 8 0.03 69.58 546.23 180.19
1000 6 0.03 0.23 0.58 0.21
10000 5 0.04 3.79 9.80 4.36
D 100 6 0.03 0.87 2.75 1.16
1000 5 0.02 1.74 7.66 2.98
10000 5 0.05 18.40 82.51 32.24
E 100 10 0.02 153.99 783.87 307.85
1000 9 0.02 101.02 903.07 283.57
10000 8 0.03 13.05 51.06 21.80

Figure 6-15 shows the distribution of solution times for each value ofk. The vertical segments

of the graph show the solution times for the corresponding value ok. The times are plotted on a

logarithmic scale to better show the distribution of times atthe bottom of the graph.

While most solution times are clustered at the bottom of the plot (relatively short solution

times), there are afew for each value of k with relatively long solution times. Perhaps most

noteworthy is the behavior of points in themiddle of the plot. Ask increases, there is a general

shift of times upward, as well as a spreading out of solution times.

Given the greater number of problems solved and generally faster solution times withk = 100,

generating 100 solutions for each subproblem at each iteration of the algorithm appearsto be the

most effective, even if, on occasion, more iterations must be made.

Comparison to Single-Project Scheduler. As previously seen in Table 6-6, the decomposition

approach outperformed the singleproject Scheduler in terms of number of problems solved within

a 20-minute time limit and in terms of solution time.

6-51

Log Distribution of Solution Times vs. k
1000 r g
* *e A
L 4
*
100 A
[]
A
([J
o) s °
S 104 e 0
O
n A °o®
o ..
g A °
£ .
= . *
c []
2 A °
5 1 A a
& . ° °
A ®
[
2 ¢
*
* A o
* []
* A
[]
014 A
A
* A []
L 224 L 2 4 [] [}
* o6 o AA AA A e o [J
000 00 o AA A AAA []
L 2R 4 * A A A
0.01
* k=100 A k=1000 ® k = 10000
Figure 6-15. Log Distribution of Solution Timesvs. k

NonConvergence While the focus of the analysisin this section has been on the problems

that solved within a 20-minute time limit, the question remains how long it takes to solve the other

6-52

problems. A number of the these other problems were solved with a twehour time limit. One
problem of Design B, with both difficult program and project-level constraints, solved to
optimality in just over 42 minutes, while a problem of Design C, also with difficult constraints,

required just over 1.5 hoursto solve to optimality.

On the other hand, a problem of type D and a problem of type E till failed tosolve in the time
alotted. In both cases, the objective function value found in 2 hours was no better than that found
in 20 minutes. Because of the misuse of the SweeneyMurphy Optimality Condition as being
necessary and not just sufficient, it is possible that the failure to establish an optimal solution
results from an inahility to classify the best found solution as optimal rather than not being able to
find an optimal solution. For this reason, finding a necessary condition to establish optimalityis a

worthwhile area for future research.

Summary and Conclusions

The decomposition approach presented in this chapter proved effective for solving the
MRCMPSP-GPR/EXP, even for problems with as many as 50 activities. The decomposition
approach solved more problems than the single-project Scheduler and in lesstime. The AUF
method of determining Lagrangian multipliers appeared most useful, as did generating 100
solutions to each subproblem at each iteration. The lack of a necessary condition to establish
optimality makes it difficult to determine if any given problem will converge to an optimal solution.
However, even in the cases where the bestfound solution cannot be established as optimal, the set

of k solutions produced by the algorithm may <till beconsidered good heuristic solutions.

6-53

VI1I. Contributions and Recommendations

This chapter presents an overview of the research in this dissertation, outlining the most
significant contributions of the research (summarized in Table 7-1) and suggesting areas for

further research.

Contributions

This dissertation introduced the Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting Resources (MRCMPSRGPR/EXP) to the
project scheduling literature. The MRCMPSP-GPR/EXP builds upon the classic Resource-
Constrained Project Scheduling Problem (RCPSP), extending the RCPSP for multiple activity
execution modes, generalized precedence with minimal and maximal time lags, and expediting
resources, all within a multi-project framework. The multi-project framework for the MRCMPSP-
GPR/EXP allows for generalized precedence relationships and resource constraints (both
renewable and nonrenewable) at the program level, not just at the project level. A mathematical
formulation of the MRCM PSP-GPR/EXP was constructed and extended from the G1 formulation
of the RCPSP by Pritsker et al. (1969).

A problem generator for the MRCMPSRGPR/EXP was developed as part of this research.
The Program Attributes Generator with Expediting Resources (PAGER) gives the user exensive
flexibility to define the parameters of the problem to be generated. This alows the user to craft
any of the problems diagrammed in Figure 7-1 (repeated from Figure 2-1), all of which are specia
cases of the MRCMPSP-GPR/EXP.

The most important feature of PAGER is the method it uses to construct the underlying project
network structure. PAGER uses the Restrictiveness measure proposed by Thesen (Thesen, 1977),
which defines the degree to which a network is constrained by its component arcs. Thisneasure is
recognized as being far superior to other measures of network complexity, and PAGER is the first
generator to directly exploit this particular measure. Use of the Thesen Restrictiveness measure
gives the user of PAGER unparalleled control overthe complexity of the project network. Such
control is imperative in designing an experiment to evaluate any algorithm for solving a project
scheduling problem since the effectiveness of an algorithm is directly impacted by the complexity
of the project network (Kolischet al., 1992).

7-1

Resource-Constrained

w/ Generalized Precedence
& Expediting Resources

Multi-Modal,

Multi-Project
Scheduling Problem

4

Multi-Modal, Generalized, Multi-Modal,
Resource-Constrained Multi-Modal, Resource-Constrained
Project Scheduling Problem Resource-Constrained Project Scheduling Problem
w/ Generalized Precedence Multi-Project w/Expediting Resources
Scheduling Problem y
Maximal N
Lags
Generalized, Multi-Modal,
Multi-Modal, Resource-Constrained
Resource-Constrained Multi-Project
Project Scheduling Problem Scheduling Problem
4 A
A
Generalized, Multi-Modal, Resource-Constrained Resource Critical
Resource-Constrained Resource-Constrained Multi-Project, Project Crashing Problem
Project Scheduling Problem Project Scheduling Problem Scheduling Problem
y y y y
Minimal Multiple Multiple Additional
Lags Modes Projects Resources
Resource-Constrained

Project Scheduling Problem

4

Constrained
Resources

Project Scheduling Problem

Figure 7-1. Problem Hierarchy

The principal focus of this research was the development of two methodologies for solving the

MRCMPSP-GPR/EXP, one treating any problem instance as a single project, the other exploiting

the decomposability of multi-project instances of the MRCMPSP-GPR/EXP.

7-2

The first methodology for solving the MRCMPSRGPR/EXP is a specialized, implicit
enumeration algorithm based on the scheme by Talbot (1982) for the MulttModal RCPSP
(MRCPSP). Talbot’s algorithm was extended for generalized precedence with minimal and
maximal time lags and for expediting resources. Since the objective of the MRCMPSRGPR/EXP
isto minimize project costs, including those for expediting resources, the objective function of the
MRCMPSP-GPR/EXP is a non-regular measure of performance. The nonregularity of the
objective function makes the majority of the bounding rules in the literature inapplicable for the
MRCMPSP-GPR/EXP. Consequently, special bounding rules were developed and incorporaed
into the implicit enumeration algorithm. Testing of the algorithm with and without the new
bounding rules showed a significant acceleration in the speed of the algorithm with the bounding
rules. The algorithm was also demonstrated to be a significantimprovement over agenera 01
programming approach with Special Ordered Sets (SOS) of variables as implemented in IBM’s
Optimization Solutions Library (OSL). No other approach in the literature is capable of solving
the MRCM PSP-GPR/EXP, making the specidized algorithm developed in this dissertation the first
of itskind.

An additional feature built into the specialized single-project agorithm is the ability to
generate a set of k-best solutions, not just asingle optimal. The set of k-best solutions may be
useful to a decision-maker who might prefer one mathematically optimal solution over another, or
even a mathematically inferior (but close to optimal) solution, for normathematical reasons. The
set of k-best solutions is also required by the decompgstion approach, which is the second
methodology developed for solving the MRCMPSPGPR/EXP.

The decomposition approach for solving the MRCMPSRGPR/EXP is based on the work by
Sweeney and Murphy (1979). The approach uses Lagrangian relaxation to decomposethe original
problem into a number of subproblems (representing the multiple projects) and a master problem
(containing the programtlevel constraints). A number of multipliers for relaxing the original
problem were developed and tested, the most efficientof which is based on the Average Utilization
Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985).

Since Sweeney and Murphy (1979) do not specify how to solve the subproblems or the master
problem, subproblems were solved togenerate a set of k-best solutions using the single-project
algorithm previoudly described. An implicit enumeration algorithm for solving the master problem

was also developed as part of this research. The decomposition approach was

7-3

Table 7-1. Summary of Key Contributions

Contribution Extenson | New Feature | Theoretical

Mathematical Formulation of MRCMPSP-GPR/EXP X

Problem Generator for MRCM PSP-GPR/EXP X X X

Directly Exploited Thesen Restrictiveness as X
Measure of Network Complexity

Made Tailorable to Vast Array of Problem Types X

Specialized Algorithm for Single-Project I nstances of X X X
the MRCMPSP-GPR/EXP

Addressed Generdlized Precedence and X
Expediting Resources

Developed New Set of Bounding Rules X

Incorporated Approach for Generating Set ofk- X
Best Solutions

Decomposition Algorithm for Multi-Project Instances X X
of the MRCMPSP-GPR/EXP

Built Upon Specialized Algorithm for Single X
Project Instances

Addressed Generdlized Precedence, Renewable & X
Nonrenewable Resources, and Expediting
Resources at the Program Level

Developed New Approaches for Obtaining X
Lagrangian Multipliers

Developed Scheme for Choosing Number of X
Solutions to Generate from Each Subproblem

Developed Special Acceleration Schemes X
Incorporated Approachfor Generating Set of k- X

Good Solutions

Discovered Error in SweeneyMurphy (1979) X

Decomposition Algorithm

7-4

further enhanced by three acceleration schemes. Testing showed that more problems could be
solved within afixed time limit with the decompsition approach than by solving the problems asa
single project. Testing also showed that the acceleration schemes further increase the number of
problems which can be solved within a fixed time limit. Finally, multiple choices of k, the number
of best solutions generated for each subproblem, were tested to determine their impact on solution
time. It was shown that, in general, a choice of 108best solutions from each subproblem led to the
most problems solved within a fixed solution time.

Table 7-1 provides a summary of key research contributions. For each contribution, Table 71
identifies whether the contribution is anextension of research presented in the literature or anew
feature which has not been addressed in the literature, and whether or no the contribution is of a
theoretical (versus applied) nature.

Recommendations

The research presented in this dissertation unfolded a number of areas for further research.
They include:

1. VanHove (1998) introduced the concept of generalized precedence wit time lags
dependent on the mode chosen for the related activities. Although Van Hove did this for
minimal lags only, PAGER could easily be expanded to include generalized precedence
with minimal and maximal lags based on mode selection. To expand PAGERIn this way
would require a straightforward redefinition of the array which describes the generalized
precedences to add two additional indices, specifying the mode selected for each of the
related activities. While such an expansion would not be a thegetical advancement, it
would alow the flexibility necessary to generate problems of the type proposed by Van
Hove.

2. Both solution algorithms developed in this dissertation (the singleproject Scheduler and
the multi-project decomposition algorithm) have keen used to find optimal solutions (or
sets of k-best solutions). Both agorithms, however, could be terminated before completion
to provide a heuristic solution (or set of solutions) to a problem. As discussed in Chapter
V, the single-project Scheduler often finds an optimal solution to a problem very quickly,
even if it requires an extensive amount of time to verify the optimality of the solution. If,

each time one of the algorithms found a solution, the solution were compared to a

7-5

theoretical lower baund (e.g., the linear program relaxation), it might be possible to use the
algorithms on much larger problems to find a solution within a desired tolerance of the
theoretical lower bound €.g., 5-10%). One advantage of both algorithms in this
dissertationisthat, by their nature, they will always provide feasible solutions only. This
is not the case with all heuristics (Drexl and Grunewald, 1993). Therefore, both
algorithms, used as heuristics, might favorably compare to other heuristics in the literature.

3. The decomposition approach developed in this dissertation should easily lend itself well to
parallelization. Since each subproblem is independent of the others, they could be solved
in parallel, thereby reducing (perhaps significantly) the overall time required to solve a
problem. Thereis, of course, some computational overhead associated with solving
problems in parallel, but the time saved in solving the subproblems would most likely
compensate for this overhead. This should be especially true themore subproblems (or
projects) there are in the problem.

4. The Optimality Theorem presented by Sweeney and Murphy (1979: 1131) provides a
sufficient condition to establish the optimality of the best solution to the decomposition
master problem. Chapter VI showed, however, that the SweeneyMurphy Optimality
Theorem provides no necessary conditions. Consequently, the decomposition algorithm
presented by Sweeney and Murphy may fail to terminate successfully, even if an optimal
solution to the original problemhas been found. Development of a necessary condition
would significantly advance the functionality of the Sweeney-Murphy Decomposition

approach.

Summary

Compared to many disciplines, the field of project scheduling is till initsinfancy. This
dissertation has advanced this growing field, introducing the MRCMPSRGPR/EXP to the
literature and contributing two methodologies for solving the MRCMPSPGPR/EXP. This
dissertation has also contributed to the more genera fields of networks (in particular, the
generation of networks) and integer programming (especially the decomposition of large problems).
Like al research, this dissertation has also fostered new questions and areas for research. The
hope of this researcher is that the body of knowledge willcontinue to grow and that larger and

more important problems can be addressed.

7-6

Overview

APPENDIX A. Notation

This appendix provides a Rosetta Stone of notation used throughout this dissertation. The

following sections list, respectively: (1) the notation used to describe the different types of project

scheduling problems, (2) an dphabetical listings of abbreviations and acronyms, and (3)

mathematical notation. Except as otherwise noted, the notation presented here is used consistently

throughout this dissertation.

Problem Types
GMRCMPSP:

GMRCPSP:

MPSP:
MRCMPSP-GPR:

MRCMPSP-GPR/EXP:

MRCPSP:
MRCPSP-GPR:

MRCPSP-GPR/EXP:

NPVP:
PSP
RCMPSP:
RCPSP:

Generalized, Multi-Modal, Resource-Constrained, Multi-Project
Scheduling Problem

Generalized, Multi-Modal, Resource-Constrained Project
Scheduling Problem

Multi-Project Scheduling Problem

Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence

Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting Resources

Multi-Modal, Resource-Constrained Project Scheduling Problem

Multi-Modal, Resource-Constrained Project Scheduling Problem
with Generalized Precedence

Multi-Modal, Resource-Constrained Project Scheduling Problem
with Generalized Precedence and Expediting Resources

Net Present Value Problem

Project Scheduling Problem

Resource-Constrained, Multi-Project Scheduling Problem
Resource-Constrained Project Scheduling Problem

Abbreviationsand Acronyms

ATO: Air Tasking Order

AUF Average Utilization Factor

Cl: Complexity Index

CNC: Coefficient of Network Complexity

A-1

CPM: Critical Path Method

(D): Lagrangian Dual of Problem (P)

ERS: Expediting Resource Strength

IP: Integer program

GCPM: Generalized Critical Path Method

LP: Linear program

(MP): Sweeney-Murphy Master Problem

(MP2): Revised Sweeney-Murphy Master Problem
(P): LP formulation of project scheduling problem
PAGER: Program Attributes Generator with Expediting Resources
RS: Resource Strength

RT: Network Restrictiveness (of Thesen)

SOS: Special Ordered Set

SP, 2% Sweeney-Murphy Subproblem p

M athematical Notation

The notation provided in this section is listed alphabetically. However, any given letter may be
represented by its Roman or Greek equivalents, its lower or upper cases, or by different formats
(i.e., italicsand bold). The representation of aletter denotes the type of mathematical entity it
symbolizes. Using the letter “x” (and its Greek equivalent “?”) as an example, the following list
correlates the letter representation to the mathematical entity and lays out the ordering of notation
based on its representation.

Scalar (e.g., index, constant)

Scalar

Scalar (e.g., upper bound on index, constant)
Set

Vector

X

Matrix
Vector

?: Function

A-2

Notation

> 2

AE:

A

(Zero) Index associated with programlevel sets (i.e., the program isProject 0)
Binary variable: 1, if activity i directly precedes activity |; 0, otherwise

Cost for completing the program at timet

Set of network arcs (Chapter IV only)

Set of all schedules

Set of activities which are eligible for labeling and have no generalized precedence
relationship (used in the GCPM)

Set of activities which are eligible for labeling and have a generalized precedence
relationship (used in the GCPM)

Set of activities which have been labeled (used in the GCPM)

Set of activities where each activity is a generalized predecessor every other
activity in the set (used in the GCPM)

Adjacency matrix

Matrix of program-level generalized precedence constraint coefficients associated
with project p

Matrix of program-level expediting resource constraint coeffigents associated
with project p

Matrix of program-level constraint coefficients associated with projectp
Vector of righthand side coefficients of constraint setp

Matrix of project-level generalized precedence constraint coefficients associated
with project p

Matrix of project-level expediting resource constraint coefficients associated with
project p

Matrix of constraint coefficients pertaining to project p
Cost of nonrenewable expediting resources required by kp
Cost of an expediting unit of nonrenewable resourceq
Cost of renewéble expediting resources required by kp

Cost of an expediting unit of renewable resourceq at timet
Accumulated cost of the current solutions of Subproblems 1 throughp

Coefficient of network complexity for projectp

A-3

C,: Vector of costs associated with project p
d..: Duration of activity i in modem
dg“"‘ : Minimum duration of activities in project p
Maximum duration of activities in project p

doim: Duration of activity p(i) in modem
D: Program planning horizon
Dp: Planning horizon of project p
?.: Duedate factor of projectp (Chapter 1V only)

?.:. Difference between the worst and best solutions to Subproblenp
2™ Minimum due date factor of projectp (Chapter 1V only)

? % Maximum due date factor of project p (Chapter 1V only)

? . Difference between upper bound and lower bound of (MP)
29" Minimal start-start lag time between activitiesi and j
Maximal start-start lag time between activitiesi and |

6. Early start time of activity p(i)
E,: Early start time of project p

ENCS“in : Minimum expediting nonrenewable resource base cost for projectp
ENCS“"‘X : Maximum expediting nonrenewable resource base cost for projectp
ERCS“in : Minimum expediting renewable resource base cost for projectp
ERCS“ax © Maximum expediting renewable resource base cost for projectp
ERSm': Minimum expediting resource strength for resource type? for project p
ERSp: Maximum expediting resource strength for resource type? for project p

?+ . Resourcefactor tolerance
F. Early program completion time
Fo: Early completion time of projectp
? : Objective function of a scheduling problem

?(S): Objective function value of a particular schedule S

A-4

Graph (Chapter IV only)
Program completion due date

Completion due date of projectp

Units of expediting, nonrenewable resourceq used

Units of expediting, renewable resourceq used at timet

Units of expediting, nonrenewable resourceq remaining after projects 1 throughp

have been added to the program schedule

Units of expediting, nonrenewable resourceq available

Units of expediting, renewable resourceq remaining in time t after projects 1
through p have been added to the progam schedule

Units of expediting, renewable resourceq available at time t

Index associated with activities/ jobs (see alsoj). Also, index associated with
levels of a search tree.

Set of activities/ jobsin project p

Index associated with activities / jobs (see alsoi)
Number of activities/ jobs

Number of activities/ jobsin project p

Minimum number of activities/ jobsin project p

Maximum number of activities/ jobs in project p

Index associated with solutionsto a problem. Also, used generically asin “k-best”

solutions

Number of solutions to projectp
Minimum total demand for resourceq in project p

Maximum total demand for resourceq in project p

Late start time of activity p(i)

Lag coefficient of project p
Minimum lag coefficient of project p
Maximum lag coefficient of project p

Lower bound on solution to Problem (P)

A-5

Fraction of arcsin project p which denote generalized precedence
Lower bound on the minimum lag times for projectp
Upper bound on the minimum lag times for projectp
Lower bound on the maximum lag times for projectp

Upper bound on the maximum lag times for projectp

Zero-one variable associated with thek™ solution to projectp
Vector of variables ? representing solution to SweeneyMurphy Master Problem
Execution mode of activity|

Set of mode assignmentsassociated with solution kp
Minimum number of modes per activity in project p
Maximum number of modes per activity in project p

Set (or number) of executionmodes for activity i of project p
Minimum base mode cost

Maximum base mode cost

Minimum mode cost increment

Maximum mode cost increment

J-tuple of the execution modes of each activityj, j =1, ..., J
Lagrangian multipliers used in Sweeney-Murphy Decomposition
Number of digunctive arcsin a graph

Set of network nodes (Chapter 1V only)

Set of activities which have an explicit generalized precedence relationship with
activity i (see Definition 4-16)

Set of activities which have an implicit generalized precedence relationship with
activity i (see Definition 4-17)

Set of generalized pregedence relationships in project p

Set of activities which precede activityi

Set of standard precedence relations within projectp

Index associated with projects

Activity i of projectp

A-6

P: Redtrictiveness of agraph
P, ‘G ?1%: Probability of time-increasing activity costs for project p
P, “G ?2% Probability of time-decreasing activity costs for project p
Py, (F ?1): Probability of duration-constant demands for resource type? for project p
Py (F ?2): Probability of duration-nonincreasing demands for resource type~? for project p
P: Number / set of projectsin amulti-project program
PF;“"‘ : Maximum number of predecessors per activity for project p
Pp”]i” : Minimum number of finish activitiesin project p
Pp”}ax : Maximum number of finish activities in project p
PEN,,: Program base penalty
PEN,,: Program penalty increment
PENJS': Minimum project base penalty
PEN 5" : Maximum project base penalty
PEN g‘l"‘ : Minimum project penalty increment
PEN ™ : Maximum project penalty increment
P: Denotes a scheduling problem

N

P, : Pricecharged to aproject for nonrenewable resourcey

p ; : Price charged to a project for renewable resourceq in time period t

? ' Number of possible permutations of a number sequence (Chapter 1V only)

? . Total cost difference between atime only and a resource feasible schedules

QV: Set of al nonrenewable resources

Q)': Set of programlevel nonrenewable resources

Q): Set of nonrenewable resources unique to projectp
QR: Set of all renewable resources

QF: Set of programlevel renewable resources

QF: Set of renewable resources unique to projectp

A-7

Qg?_l” : Minimum number of resources of type ? requested per job in projectp

QX Maximum number of resources of type ? requested per job in project p
ri: Binary variable: 1, if activity j is reachable from activity i; O, otherwise

Units of nonrenewable resourceq required by activity i in modem

r. : Tota demand by solution kpfor nonrenewable resourceq

Units of nonrenewable resourceq required by activity p(i) in modem

Units of renewable resourceq required by activity i in modem

.. Total demand by solution Kk, for nonrenewable resourceq at timet

Units of renewable resourceq required by activity p(i) in modem

Minimum resource demand for resource type? for project p

Maximum resource demand for resource type? for project p

RT: Restrictiveness measure of Thesen

RY: Units of nonrenewable resourceq remaining after projects 1 through p have been
added to the program schedule

Units of renewable resourceq remaining in timet after projects 1 throughp have
been added to the program schedule

RqN : Units of nonrenewable resourceq available

Rqu : Units of renewable resourceq available at time t

Resource factor of resource type? for project p

RSF’]?}” : Minimum resource strength for resource type? for project p

ngi_?" : Maximum resource strength for resource type? for project p
R: Reachability matrix
? .. Release date of projectp

Minimum release date of projectp

Maximum release date of project p

5. Start time of activity

A-8

min .
S

ST

pl

UB:

tol CNC-

tol TH-

min |

Set of activities which succeed activity i

Set of start time assignments associated with solution kp
Maximum number of successors per activity for project p
Minimum number of start activities in project p

Maximum number of start activitiesin project p

J-tuple of the start time of each activityj,j =1, ..., J
Schedule of problemP

Upper bound on solution to Problem (P)

Tolerance on coefficient of network complexity
Tolerance on Thesen Restrictiveness

Dummy terminal activity of a program

Dummy terminal activity of project p

Thesen Restrictiveness measure for projectp

Resource type

Minimum number of resources of type ? for project p

Maximum number of resources of type ? for project p

[&i, 1], the start time window of activityp(i)
Directed path from activity i to activity

Binary variable: 1, if activity p(i) is executed in modem and starts at timet; O,
otherwise

Binary variable: 1, if terminal activity T, of project p starts at timet; 0, otherwise
Binary variable: 1, program terminal activity T starts at timet; O, otherwise

Integer variables associated with the expediting resources of projectp
Vector of variables associated with projectp
K" solution to projectp

Objective function value of a mathematical programming problem

A-9

Appendix B. PAGER Input

This appendix provides an example of a Specification File used to define the parameters
required by the Program Attributes Generator with Expediting Resources (PAGER).

Problem Generator Input

EE SRR R S S S R R R R S S R SRR R S R S

SPECI FI CATI ONS:

EE R R R I R R R

GENERAL | NFORVATI ON -

Probl em Nane : Test Program

EE R R R T R R R R Rk
PROGRAM -

Nunmber of Projects 4

M ni num Program Due Date Factor : 0.00

Maxi mum Program Due Date Factor : 0.00

EE R R R R R R R R
PROQJECTS - o FOR EACH PRQJECT-------- >
M ni mum Number of Jobs 1444414

Maxi mum Number of Jobs 1444414

M ni num Proj ect Rel ease Dates 11111

Maxi mum Proj ect Rel ease Dates 11111

M ni mum Proj ect Due Date Factors : 0.00 0.00 0.00 0.00 0.00

Maxi mum Proj ect Due Date Factors : 0.00 0.00 0.00 0.00 0.00

EE R R R R Sk S R kR S T R S
MODES - <o FOR EACH PRQJECT-------- >
M ni mum Nurber of Job Mddes 11111

Maxi mum Number of Job Mddes 11111

M ni mum Job Duration 11111

Maxi mum Job Duration : 10 10 10 10 10

EE R R R R R Rk R R S
PROJECT NETWORKS - e FOR EACH PRQJECT-------- >
M ni mum Nunmber of Start Jobs 11111

Maxi mum Nunmber of Start Jobs : 1000 1000 1000 1000 1000

M ni mum Nurmber of End Jobs 11111

Maxi mum Number of End Jobs : 1000 1000 1000 1000 1000

Maxi mum Successors Per Job : 1000 1000 1000 1000 1000

Maxi mum Predecessors Per Job : 1000 1000 1000 1000 1000

Mn Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20

Max Start-Start Lag Fraction :0.20 0.20 0.20 0.20 0.20

M n on Lower Bound of Lag :-0.2-0.2-0.2-0.2-0.2

Max on Lower Bound of Lag :0.2020.20.20.2

M n on Upper Bound of Lag 0.4 0.40.40.40.4

Max on Upper Bound of Lag 0.8 0.8 0.80.80.8

Use CNC (Arcs/ Nodes) (1l=Yes) 0

Net wor k Conpl exity Tol erance 0. 00

CNC (Arcs/ Nodes) 0.00 0.00 0.00 0.00 0.0

Use Thesen Restrictiveness (1=Yes) 1

Restrictiveness Tol erance 0.1

Thesen Restrictiveness : 0.75 0.75 0.75 0.75 0.75

EE R R R R R T R Rk

PROGRAM NETWORK -

Mn Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Max Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Maxi mum I nter-Proj Successors/Job : 1000
Maxi mum I nter-Proj Predecessors/Job : 1000
Mn Start-Start Lag Fraction :0.20
Max Start-Start Lag Fraction :0.20
M n on Lower Bound of Lag :-0.2

Max on Lower Bound of Lag 0.2
M n on Upper Bound of Lag ;0.4
Max on Upper Bound of Lag : 0.8
Program Level CNC : 0.0
Program Level Restrictiveness 0.2

B-1

EE R R R R R R R S Rk S

RENEWABLE RESOURCES - PROGRAM < ---FCOR EACH PRQJECT---->

M n Nunber of Renewabl e Resources 311111

Max Nunber of Renewabl e Resources 0311111

M n Nunmber of Res Requested Per Job: 000 00O

Max Number of Res Requested Per Job : 10 10 10 10 10 10

Renewabl e Resource Factor :1.00 1.00 1.00 1.00 1.00 1.00
M ni mum Per - Peri od Res Demand 111111

Maxi mum Per - Peri od Res Demand : 10 10 10 10 10 10

M ni num Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maxi mum Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
M n Exped Renew Resource Strength : 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Renew Resource Strength : 0.50 0.000.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 0.00 0.00 0.00 0.00 0.00 0.00
IR R R R R RS EEEEEEE RS SR SR RS EEE R SRR EEEREEREREEREEEEEEEREEEREEEEEERESEEEERESEERESERESESESEES
NONRENEWABLE RESOURCES - PROGRAM <----FOR EACH PRQJECT---->
M n Nunber of Nonrenewable Resources: 311111

Max Nunmber of Nonrenewable Resources: 3 11111

M n Nunmber of Res Requested Per Job: 000 00O

Max Number of Res Requested Per Job : 10 10 10 1010 10

Nonr enewabl e Resource Factor :1.00 1.00 1.00 1.00 1.00 1.00
M ni mum Resour ce Denmand 111111

Maxi mum Resour ce Denand : 10 10 10 10 10 10

M ni num Nonr enew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maxi mum Nonr enew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
M n Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 000001

EE R R R R R R R R R S Rk

OBJECTI VE FUNCTI ON -

Conpl etion Penal ty (1 =1Include) : 1
Mbde Costs (1 =1Include) : 1
Exped Resource Costs (1 = Include) : 1

EE R R R S S R R R R R S R R

COSTS DATA - (*/** => Value is Fraction of Program Penalty M n/lncrenment

Program Penalty M ni mum and | ncr : 1000 1000
Proj ect Penalty M ni mum Range * : 0.50 0.75
Project Penalty Increment Range ** 0.40 0.50
Base Mbde Cost Range * 0.05 0.10
Mbde Cost |ncrement Range ** 0.05 0.10
Prob of Tine-Increasing Job Costs 1. 00

Prob of Tine-Decreasing Job Costs 0. 00

Exped Renew Resource Cost Range * : 0.00 0.05
Exped Nonrenew Resource Cost Range *: 0.00 0.05

R R R S S R T R R R R R R O R S T

TOLERANCES -
Resour ce Fact or 0 0.1
Maxi mum Tri al s ;200

EE R R R R R R R R S Rk Rk

B-2

Appendix C. PAGER Output

This appendix provides an example of a problem file generated by the Program Attributes
Generator with Expediting Resources (PAGER). The problem statement isin PAGER formet.

Problem File

SRR R R S S R R R T R R
Pr ogr am Nane : Test Program

Nunmber of Projects 4

EE R R R S R R R R R kR
GENERAL DATA:

Pr oj Rel ease Due Pr oj MPM Renewabl e Nonrenewabl e
No Jobs Date Dat e Horizon Tine Resources Resources

0 18 1 25 54 25 3 3
1 4 1 10 10 10 1 1
2 4 1 10 10 10 1 1
3 4 1 19 19 19 1 1
4 4 1 15 15 15 1 1

LR R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE XX

PROGRAM AS- PROJECT CONVERSI ON DATA
SUCCESSORS:
Proj Job No No
No No No Mode Success Successors

1 0 1 1 4 2 6 10 14
2 1 1 1 1 3

3 1 2 1 1 4

4 1 3 1 1 5

5 1 4 1 1 18

6 2 1 1 1 7

7 2 2 1 1 8

8 2 3 1 1 9

9 2 4 1 2 18 16
10 3 1 1 1 11

11 3 2 1 2 12 6
12 3 3 1 1 13

13 3 4 1 1 18

14 4 1 1 1 15

15 4 2 1 1 16

16 4 3 1 1 17

17 4 4 1 1 18

18 0 18 1 0

EE R R R R Sk

START- START LAGS:

Job Lag Lag M n Max
No No Job Lag Lag
0O 0O o o0 o©
7 1 15 0 7

EE R R R R S R R S S R

MODE DATA W TH RESOURCES:

Job Mode Resour ce Requirenments

No No Dur R1 R2 R3 R4 R5 R6 R7 N1 N2 N3 N4 N5 N6 N7
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 3 3 10 7 3 0 0 0 4 8 3 8 0 0 0
4 1 7 2 10 6 4 0 0 0 3 9 1 3 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 2 9 5 6 0 7 0 0 4 7 8 0 3 0 0
8 1 8 9 10 9 0 1 0 0 8 5 3 0 2 0 0
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C-1

PRRPRPRRRERPRPR
COMDWOWOOOW©
COOM~NOONwW
OO 0®NO O
cCoWooOuUuw
[e¥eleloNoleNoNa
[e¥eleloNoleNoNa
[eNoleNoNaNalEN] N}
OoOoNpNpOOOO
coPwWOOANO©
oOoNmwoOo N
[eNeole-NoNaN=ENE
Oo0oQOoo0oo

R R R S T R Rk kS S S R R R S R

REGULAR RENEWABLE RESOURCE AVAI LABI LI TY:
Units
R1 R 2 R 3 R 4 R5 R 6 R 7

17 21 16 4 7 7 4
IR R SRR E SRR EEEEEEE SR SR EEEEEREEEIEEREREREEEEREEREEREEEREEEEEEEEESEEEESERESEEEEESRS
EXPEDI TI NG RENEWABLE RESOURCE AVAI LABI LI TY
Uni t s/ Cost
R1 R 2 R 3 R 4 R 5 R 6 R7

8 42 11 15 7 16 0 39 0 22 0 18 0 24
IR R R SR EEEEEEEEE RS SR SRR EEEEEEEEEEREEREEREEEEEEEREEREEEREEEEEERESEEEERESEERESERESESEEES
REGULAR NONRENEWABLE RESOURCE AVAI LABI LI TY
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7

39 49 37 11 5 8 11
IR R R SRR R EEEEE SR RS SR SRR EEEEEEEEEEREEREREEEEEEEEEEEEREEEEEERESEEEERESEERESERESESEEES
EXPEDI TI NG NONRENEWABLE RESOURCE AVAI LABI LI TY
Uni t s/ Cost

20 22 25 15 19 40 0 22 0 11 0 36 0 9
IR R R SR RS EEEEE SR RS SR SRR EEEREEEEEREREEREREEEEEREEEEREEEREEEEEERESEESEERESEERESERESESEEES
COVPLETI ON MODE COSTS
Job Mode Base Incr Start End

No No Cost Cost Tinme Tinme

1 1 0 0 1 30
2 1 0 0 1 45
3 1 64 72 1 45
4 1 79 70 4 48
5 1 691 425 10 54
6 1 0 0 1 38
7 1 61 78 1 39
8 1 72 80 3 41
9 1 583 457 10 48
10 1 0 0 1 30
11 1 64 54 1 30
12 1 96 54 10 45
13 1 580 497 19 54
14 1 0 0 1 40
15 1 72 78 1 40
16 1 90 89 10 49
17 1 654 487 15 54
18 1 1000 1000 25 54

EE R R R R R R Rk R

C-2

cooOCoo©oo

ocoQooouUuw

oo oo

Appendix D. Scheduler Output

This appendix provides an example of an output file generated by the Scheduler used to solve
single-project instances of the Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence andExpediting Resources (MRCMPSP-GPR/EXP).

EE R R R R R Rk

Pr ogr am Nane : Test Program

Nunmber of Projects : 1

Dat e : 03/19/01

Ti me : 08: 58: 30

Nunber of Sol utions : 1

Total Solution Tinme (Seconds) : .41

EE R R R R I R R R T R S Rk
Sol ns Di scarded- Project 1 : 37

EE R R R S R R T R R S
Sol uti on 1: Obj ective Function Value = 26391

Job Mode Start Tinme

1 1 1
2 1 1
3 2 10
4 3 14
5 1 17
6 1 1
7 2 14
8 1 1
9 1 18
10 1 1
11 3 1
12 3 5
13 1 12
14 1 1
15 2 5
16 2 2
17 1 13
18 1 18

Expedi ti ng Renewabl e Resource Usage:
Ti me Units
Period R1 R2 R3 R4 R5 R6 R7 R8 R9 RIO

~
=
3
A
N

R13 Rl14 R15

ONOUAWNO
PRRPRPROOOO
OoocOoORRRO
WWWWO OO O
ococococoococoo
cocococococoo
oOo0oooco0o0o0o®
oOo0oooco0o0o0o®
coocooCPoo©
coocooPoo©
oPoo®Poo°
oPoo®Poo©°
oPoo®Poo©°
oPoo®Poo©°
oPoo®Poco©°
oPoo®Poo©°

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1 N2 N3 N4 N5 N6 N7 N8 N9 NO NI N2 N3 N4 N5

0 0 0 0 0 0 5 7 6 0 0 0 1 1 0

EE R R S R R R R T R Sk

D-1

Appendix E. Sample Decomposition Algorithm Output

This appendix provides an example of an output file generated by the decomposition algorithm
used to solve multi-project instances of the Multi-Modal, Resource- Constrained, Multi-Project

Scheduling Problem with Generalized Precedence and Expediting Resources.

R R R R R

Pr ogr am Nane : Test Program
Nunmber of Projects : 4

Dat e : 03/ 24/ 01

Ti me : 15: 03: 54
Nunber of Sol utions : 1000
Total Solution Tinme (Seconds) : 1.06

EE R R R S R R
Sol ns Di scarded- Project 0 : 1921

Sol ns Di scarded-Project 1 : 18

Sol ns Di scarded- Project 2 : 0

Sol ns Di scarded- Project 3 : 0

Sol ns Di scarded- Proj ect 4 : 0

EE R R R R S R R R
Sol uti on 1:

Obj ective Function Value = 19680

Job Mode Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 10
13 1 19
14 1 1
15 1 11
16 1 20
17 1 25
18 1 25

Expedi ti ng Renewabl e Resource Usage:
Ti me Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
10 1 3 1 0 0 0 0
11 6 0 1 0 0 0 0
12 6 5 4 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1 N2 N3 N4 N5 N6 N7

0 0 0 0 0 0 0

APPENDIX F. Best Solutionsto (MP) Versus (P)

Overview

This appendix provides an example showing that thek-best solutions to Problem (MP) are not
necessarily the k-best solutionsto Problem (P), as described in Chapter 6. The following sections
contain: (1) the PAGER input used to generate the example, (2) the resulting problem statement,
and (3) key solutions to the problem when solved using the Scheduler and when solved using the
decomposition approach. The Scheduler solutions are the best solutiongo Problem (P), while the
decomposition solutions are the best solutions to Problem (MP). Note that Solutions 1 and 2 from
both approaches are identical. Solution 1000 to (MP) is greater than that to (P). The 1006th best
solution to (P) is not even cortained in the set of the 1000 best solutionsto (MP). Infact, the
objective function values of Solutions 99 and 100 from the decomposition approach straddle the

value of the 1000-th best solution to (P).

Problem Generation Input

LR R R S S S R R Sk kR R R S R

SPECI FI CATI ONS:

EE R R R T R R R I kR kS

GENERAL | NFORVMATI ON -

Pr obl em Nane : Test Program

EE R R R S T R R R kR R
PROGRAM -

Nunmber of Projects 4

M ni mnum Program Due Date Factor : 0.00

Maxi mum Program Due Date Factor : 0.00

EE R R S R R T R R Sk Rk
PROQJECTS - o FOR EACH PRQJECT-------- >
M ni mum Number of Jobs 144444

Maxi mum Number of Jobs 144444

M ni num Proj ect Rel ease Dat es 11111

Maxi mum Proj ect Rel ease Dates 11111

M ni mum Proj ect Due Date Factors : 0.00 0.00 0.00 0.00 0.00

Maxi mum Proj ect Due Date Factors : 0.00 0.00 0.00 0.00 0.00

EE R R R S R R R R R R Rk
MODES - oo FOR EACH PRQJECT-------- >
M ni mum Nurmber of Job Mddes 11111

Maxi mum Number of Job Mddes 11111

M ni mum Job Duration 11111

Maxi mum Job Duration : 10 10 10 10 10

EE R R R R R S S R S R R R R S R
PROJECT NETWORKS - e FOR EACH PRQJECT-------- >
M ni mum Nunmber of Start Jobs 11111

Maxi mum Nunber of Start Jobs : 1000 1000 1000 1000 1000

M ni mum Number of End Jobs 11111

Maxi mum Number of End Jobs : 1000 1000 1000 1000 1000

Maxi mum Successors Per Job : 1000 1000 1000 1000 1000

Maxi mum Predecessors Per Job : 1000 1000 1000 1000 1000

Mn Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20

Max Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20

M n on Lower Bound of Lag :-0.2-0.2-0.2-0.2-0.2

Max on Lower Bound of Lag 0 0.20.20.20.20.2

M n on Upper Bound of Lag : 0.40.40.40.40.4

F-1

Max on Upper Bound of Lag

Use CNC (Arcs/ Nodes) (1l=Yes)

Net wor k Conpl exity Tol erance

CNC (Arcs/ Nodes)

Use Thesen Restrictiveness (1=Yes)
Restrictiveness Tol erance

Thesen Restrictiveness

0.8 0.8 0.8 0.8 0.8

0

0. 00

0.00 0.00 0.00 0.00 0.0
1

0.1

0.75 0.75 0.75 0.75 0.75

EE R R R T R R T R R O

PROGRAM NETWORK -

Mn Proj Lag for Each Pair

Max Proj Lag for Each Pair

Maxi mum | nter-Proj Successors/ Job :
Maxi mum I nter-Proj Predecessors/ Job :
Mn Start-Start Lag Fraction
Max Start-Start Lag Fraction
M n on Lower Bound of Lag
Max on Lower Bound of Lag

M n on Upper Bound of Lag
Max on Upper Bound of Lag
Program Level CNC

Program Level Restrictiveness

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

EE R R R R I R R R R

RENEWABLE RESOURCES - PROGRAM < ---FOR EACH PRQJECT---->
M n Nunber of Renewabl e Resources 311111

Max Nunber of Renewabl e Resources 311111

M n Nunmber of Res Requested Per Job: 000 00O

Max Number of Res Requested Per Job : 10 10 10 10 10 10

Renewabl e Resource Factor 1.00 1.00 1.00 1.00 1.00 1.00

M ni mum Per - Peri od Res Demand 111111

Maxi mum Per - Peri od Res Demand 10 10 10 10 10 10

M ni num Renew Resource Strength
Maxi mum Renew Resource Strength
M n Exped Renew Resource Strength
Max Exped Renew Resource Strength
Prob of Duration Constant Demand

0.50 1.00 1.00 1.00 1.00 1.00
0.50 1.00 1.00 1.00 1.00 1.00
0.50 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

EE R R R R R R R R kR

NONRENEWABLE RESOURCES -
M n Nunmber of Nonrenewabl e Resources:
Max Number of Nonrenewabl e Resources:
M n Nunmber of Res Requested Per Job :
Max Number of Res Requested Per Job :
Nonr enewabl e Resource Fact or :
M ni num Resour ce Denand :
Maxi mum Resour ce Denand

M ni num Nonr enew Resource Strength
Maxi mum Nonr enew Resource Strength

M n Exped Nonrenew Resource Strength:
Max Exped Nonrenew Resource Strength
Prob of Duration Constant Denand

< ---FOR EACH PRQJECT- - - - >

10
1.00 1.00 1.00

10

1.00 1.00 1.00
1.00 1.00 1.00
0.00 0.00 0.00
0.00 0.00 0.00

0.50 1.00 1.00
0.50 1.00 1.00
0.50 0.00 0.00
0.50 0.00 0.00
0000012

EE R R R R R R R R kR S

OBJECTI VE FUNCTI ON -

Conpl etion Penal ty (1 = Include)
Mbde Costs (1 = Include)
Exped Resource Costs (1 = Include)

1
1
1

EE SRR R R S R S R R R R S R T

COSTS DATA -
Program Penalty M ni mum and | ncr
Proj ect Penalty M ni mum Range *
Project Penalty Increment Range **
Base Mbde Cost Range *

Mbde Cost |ncrement Range **

Prob of Tine-Increasing Job Costs
Prob of Ti ne-Decreasing Job Costs
Exped Renew Resource Cost Range *
Exped Nonrenew Resource Cost Range *:

- 1.00

(*/** => Value is Fraction of Program Penalty M n/Increment

1000
0. 50
0.40
0. 05
0. 05

1000

0. 00
0. 00
0. 00

0. 05
0. 05

EE R R R R R R R T R R R S S S

TOLERANCES -
Resour ce Factor
Maxi mum Tri al s

0.1
200

EE R R R S R R R R R R S

F-2

Problem File

R R R R Rk

Pr ogr am Nane : Test Program

Nunber of Projects 4

EE R R R T R R IR R R
GENERAL DATA:

Pr oj Rel ease Due Pr oj MPM Renewabl e Nonrenewabl e

No Jobs Date Date Horizon Tine Resources Resources

0 18 1 25 54 25 3 3
1 4 1 10 10 10 1 1
2 4 1 10 10 10 1 1
3 4 1 19 19 19 1 1
4 4 1 15 15 15 1 1
EE R R R S R R R R T R kR S
PROGRAM AS- PROJECT CONVERSI ON DATA
SUCCESSORS:

Proj Job No No
No No No Mode Success Successors

1 0 1 1 4 2 6 10 14
2 1 1 1 1 3

3 1 2 1 1 4

4 1 3 1 1 5

5 1 4 1 1 18

6 2 1 1 1 7

7 2 2 1 1 8

8 2 3 1 1 9

9 2 4 1 2 18 16
10 3 1 1 1 11

11 3 2 1 2 12 6
12 3 3 1 1 13

13 3 4 1 1 18

14 4 1 1 1 15

15 4 2 1 1 16

16 4 3 1 1 17

17 4 4 1 1 18

18 0 18 1 0

EE R R R R I R R R S

START- START LAGS:

Job Lag Lag M n Max
No No Job Lag Lag
0O 0O 0O o0 o©O
7 1 15 0 7

EE R R R I R T R R S Rk

MODE DATA W TH RESOURCES:

Job Mode Resour ce Requirenents
No No Dur R1 R2 R3 R4 R5 R6 R7 N1 N2 N3 N4 N5 N6 N7
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 3 3 10 7 3 0 0 0 4 8 3 8 0 0 0
4 1 7 2 10 6 4 0 0 0 3 9 1 3 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 2 9 5 6 0 7 0 0 4 7 8 0 3 0 0
8 1 8 9 10 9 0 1 0 0 8 5 3 0 2 0 0
9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 1 9 3 9 3 0 0 2 0 9 4 1 0 0 3 0
12 1 10 7 9 5 0 0 7 0 4 6 7 0 0 5 0
13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1 9 7 7 6 0 0 0 4 3 8 6 0 0 0 5
16 1 6 8 8 3 0 0 0 2 4 2 8 0 0 0 6
17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-3

EE R R R R R R R S Rk S

REGULAR RENEWABLE RESOURCE AVAI LABI LI TY:
Units
R1 R 2 R 3 R 4 R5 R 6 R 7

17 21 16 4 7 7 4
IR R R R R RS EEEEEEEEE SR SRR EEE R SRR EEEREEREREEEEEREEEEREEEREEEEEERESEESERESEEESERESESEEES
EXPEDI TI NG RENEWABLE RESOURCE AVAI LABI LI TY
Uni t s/ Cost
R1 R 2 R 3 R 4 R 5 R 6 R7

8 42 11 15 7 16 0 39 0 22 0 18 0 24
IR R R R R RS EEEEE SRR R SR SRR EEEEEEEEEEREEREEREEEEREREEREREEEEREEEEEEEEESEERERERSEE XSS
REGULAR NONRENEWABLE RESOURCE AVAI LABI LI TY
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7

39 49 37 11 5 8 11
IR R R R R RS EEEEE SR RS SR SRR EEE R SRR EREEREEREREEEREEREEEEREEEREEEEEERESEEEERESEERESERESESEEES
EXPEDI TI NG NONRENEWABLE RESOURCE AVAI LABI LI TY:
Uni t s/ Cost

20 22 25 15 19 40 0 22 0 11 0 36 0 9
IR R SRR EEEEEEEEEIEEEEEEEEEEEEEREEEEEEEEEEEREREREREREREEREEEEREEEESEESESREREESESESEXES
COVPLETI ON MODE COSTS
Job Mode Base |Incr Start End

No No Cost Cost Tinme Tinme

1 1 0 0 1 30
2 1 0 0 1 45
3 1 64 72 1 45
4 1 79 70 4 48
5 1 691 425 10 54
6 1 0 0 1 38
7 1 61 78 1 39
8 1 72 80 3 41
9 1 583 457 10 48
10 1 0 0 1 30
11 1 64 54 1 30
12 1 96 54 10 45
13 1 580 497 19 54
14 1 0 0 1 40
15 1 72 78 1 40
16 1 90 89 10 49
17 1 654 487 15 54
18 1 1000 1000 25 54

R R R I R R Rk

F-4

Key Solutions (1, 2, 99, 100, 1000)
Solutions to (P)— From the Scheduler

hkkhkkkhkhkkkhkkkhk Rk kkkkkhkkhkkhkhkkkhkkhkkkkhkkkkkk Kk *

Progr am Name Test Program
Nunber of Projects : 4
Dat e 03/ 24/ 01

Ti me 15: 03: 52
Nunmber of Sol utions 1000

Total Solution Tinme (Seconds) 1.10

hkkhkkkhkhkkkhkkkh Rk kR hkhkhkkhkkh Rk hkkkkhkk kR khkkkk Kk k&

Sol ns Discarded-Project 1 5328

hkkhkkkhkhkkkhkkk kR khkhkkkhkkhkkhkhkkkhkkhkkkkhkkkhkkk *

Sol ution 1:
(bj ective Function Value = 19680

Job Mbde Start Tine

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 10
13 1 19
14 1 1
15 1 11
16 1 20
17 1 25
18 1 25

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

10
11
12
13
14
15
16
17
18
19

DN O O
UG UTO WO
ARDAABRDRARLRPO
cooQoocoooco9o
coo@oocoocooco©o
cocooQoocoooco9o
cocoooocoooco9o

Expedi ti ng Nonr enewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

F-5

Solutions to (MP) — From Decomposition

hkkhkkkhkhkkkhkkkhk Rk hkkkkhkkhkkkkhkkkhkkhkkkkhkkhkkk*

Progr am Name Test Program
Nunber of Projects : 4
Dat e 03/ 24/ 01

Ti me 15: 03: 54
Nunber of Sol utions 1000
Total Solution Tinme (Seconds) 1. 06
IS SRR SRR RS E RS E RS R R R EREEREEEEEEEEEESEEEES]
Sol ns Discarded-Project 0 1921

Sol ns Discarded-Project 1 : 18

Sol ns Di scarded-Project 2 : 0

Sol ns Di scarded-Project 3 : 0

Sol ns Di scarded-Project 4 : 0

IR SRS R RS E SRR SEE RS EE RS RS EREE R EEREEREEEEEEEEEESEEEES]
Sol ution 1:

(bj ective Function Value = 19680

Job Mbde Start Tine

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 10
13 1 19
14 1 1
15 1 11
16 1 20
17 1 25
18 1 25

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
10 1 3 1 0 0 0 0
11 6 0 1 0 0 0 0
12 6 5 4 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

hkkhkkkhkhkkkhkkk kR khkkkkhkkkh Rk hkhkkkhkkhkkkkkkkkkkk*

Sol ution 2:
(bj ective Function Value = 19706

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 10
13 1 19
14 1 1
15 1 10
16 1 20
17 1 25
18 1 25

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
10 8 10 7 0 0 0 0
11 6 0 1 0 0 0 0
12 6 5 4 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

F-6

hkkhkkkhkhkkkhkkk kR khkkkkhkkkh Rk hkhkkkhkkhkkkkkkkkkk Kk *

Sol ution 2:
(bj ective Function Value = 19706

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 10
13 1 19
14 1 1
15 1 10
16 1 20
17 1 25
18 1 25

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

10
11
12
13
14
15
16
17
18

SN o NN oo N Neal
qUUTUTUIUTUIO O O
ARDARADARLRNO
oCooocoocoQoo
oQCooocoocoQoo
oCooocoocooQoo
o®CooococoQoo

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

hkkhkkkhkkhkhkkhkkkhkkh Rk kkhkkhkkh Rk hkkkkkkkkk ok k k%

Sol ution 99:
(bj ective Function Value = 22191

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 5
5 1 11
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 12
13 1 21
14 1 1
15 1 10
16 1 21
17 1 26
18 1 26

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
10 1 1 2 0 0 0 0
11 1 1 2 0 0 0 0
12 6 5 4 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

F-7

hkkhkkkhkhkkkhkkkhk Rk hkhkkkhkkkhkkhkhkkkhkkhkkkkhkkhkkkk*

Sol ution 99:
(bj ective Function Value = 24704

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 18
13 1 27
14 1 1
15 1 12
16 1 22
17 1 27
18 1 27

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

hhkkhkkkhkkkhkkhkkkhkkkh Rk hkkkkhkkkhkkkhkkkkhkkhkkhkkk k%

Sol ution 100:
(bj ective Function Value = 22196

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 11
8 1 13
9 1 20
10 1 1
11 1 1
12 1 11
13 1 20
14 1 1
15 1 11
16 1 21
17 1 26
18 1 26

Expedi ti ng Renewabl e Resource Usage:
Ti ne Wits
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
11 6 0 1 0 0 0 0
12 6 0 1 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

F-8

hkkhkkkhkhkkkhkkk kR khkkkkhkkkh Rk hkhkkkhkkhkkkkkkkkkk Kk *

Sol ution 100:
(bj ective Function Value = 247 69

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 4
5 1 10
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 11
13 1 20
14 1 1
15 1 12
16 1 23
17 1 28
18 1 28

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
12 6 5 4 0 0 0 0
13 6 5 4 0 0 0 0
14 6 5 4 0 0 0 0
15 6 5 4 0 0 0 0
16 6 5 4 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

N2 N3 N4 N5 N6 N7

hkkhkkkhkhkkkhkkk kR khkkkkhkkkh Rk hkhkkkhkkhkkkkkkkkkkk*

Sol uti on 1000:

(bj ective Function Value = 24752

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 4
4 1 8
5 1 14
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 17
13 1 26
14 1 1
15 1 10
16 1 20
17 1 25
18 1 26

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
10 1 1 2 0 0 0 0
11 1 1 2 0 0 0 0
12 1 6 5 0 0 0 0
13 1 6 5 0 0 0 0
14 1 6 5 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

hkkhkkkhkhkkkhkkkhk Rk hkkkkhkkh Rk hkhkkhkkhkkkkhkkhkkkk*

N2 N3 N4 N5 N6 N7

F-9

hkkhkkkhkhkkkhkkkhk Rk hkkkkhkkkhkkhkhkkkhkkhkkkkhkkkkkk *

Sol uti on 1000:

(bj ective Function Value = 32760

Job Mbde Start Tinme

1 1 1
2 1 1
3 1 1
4 1 5
5 1 11
6 1 9
7 1 10
8 1 12
9 1 19
10 1 1
11 1 1
12 1 17
13 1 26
14 1 1
15 1 13
16 1 26
17 1 31
18 1 31

Expedi ti ng Renewabl e Resource Usage:
Ti ne Units
Period R1 R2 R3 R4 R5 R6 R7

0 0 0 0 0 0 0 0
17 6 5 4 0 0 0 0
18 6 5 4 0 0 0 0
19 6 5 4 0 0 0 0

Expedi ti ng Nonrenewabl e Resource Usage:
Units
N1

0 0 0 0 0 0 0

hkkhkkkhkkkkhkkh Rk hkkkkhkkhkkhkhkkhkkhkkkkhkkkhkkkk*

N2 N3 N4 N5 N6 N7

BIBLIOGRAPHY

Agrawal, M K., S.E. Elmaghraby, and W.S. Herroelen. “ DAGEN: A Generator of Testsets for Project
Activity Nets,” European Journal of Operational Research, 90: 376-382 (1996).

Alvares-Valdes, R., and JM. Tamarit. “ Heuristic Algorithms for Resource-Constrained Project
Scheduling: A Review and an Empirical Analysis,” in Advancesin Project Scheduling. (R.
Slowinski and J. Weglarz (eds.)), Elsevier Science Publishers, Amsterdam, pp.113-134, 1989.

Ahn, T. and S.S. Erenguc. “ The Resource-Constrained Project Scheduling Problem with Multiple
Crashable Modes. A Heuristic Procedure,” European Journal of Operational Research, 107:
250-259 (1998).

Balas, Egon. “ Project Scheduling with Resource Congtraints,” in Applications of Mathematical
Programming Techniques. New Y ork: American Elsevier Publishing Company, Inc., 1970.

Baumol, William J., and Tibor Fabian. “ Decomposition, Pricing for Decentralized and External
Economies,” Management Science, 11: 1-32 (September 1964).

Bedle, E.M.L., and JA. Tomlin. * Specia Facilities in a General Mathematical Programming System
for Non-Convex Problems Using Ordered Sets of Variables,” in J. Lawrence (ed.), Proceedings
of the 5" International Conference on Operations Research, Tavistok, London.

Bean, James C. “ A Lagrangian Algorithm for the Multiple Choice Integer Program,” Operations
Research, 32: 1185-1193 (September-October 1984).

Bein, W.W., J. Kamburowski, and M.F.M. Stallmann. “ Optimal Reduction of Two-Termina Directed
Graphs,” SIAM Journal on Computing, 221: 1112-1129 (1992).

Berczi, Andrew. “ The Scheduling of Workpackage Networks Through Goa Programming,” XXVII
International Conference of the Institute of Management Sciences (TIMS), July 1986.

Blazewicz, J.,, JK. Lenstra, and A.H.G. Rinnooy Kan. * Scheduling Projects to Resource Constraints:
Classification and Complexity,” Discrete Applied Mathematics, 5: 11-24 (1983).

Bowman, Edward H. “ The Schedule-Sequencing Problem,” Operations Research, 7: 621-624 (1959).

Chalmet, Luc G., and Ludo F. Gelders. “Lagrangean Relaxations for Solving a Warehousing Model,”
Paper presented at the ORSA-TIMS Joint National Meeting, November 1976.

Christofides, Nicos, R. Alvarez-Valdes, and JM. Tamarit. “ Project Scheduling with Resource
Constraints: A Branch and Bound Approach,” European Journal of Operational Research, 29:
262-273 (1987).

Cooper, D.F. “Heuristics for Scheduling Resource-Constrained Projects: An Experimenta
Investigation,” Management Science, 22: 1186-1194 (July 1976).

BIB-1

Dantzig, George B., and Philip Wolfe. “ Decomposition Principle for Linear Programs,” Operations
Research, 8: 101-111 (January-February 1960).

Davis, Edward W., and George E. Heidorn. “ An Algorithm for Optimal Project Scheduling Under
Multiple Resource Constraints,” Management Science, 17: B803-B816 (August 1971).

De Reyck, B. * On the Use of the Redtrictiveness as a Measure of Complexity for Resource
Constrained Project Scheduling”, Onderzoeksrapport Nr. 9535, Department of Applied
Economics, Katholieke Universiteit Leuven (1995).

De Reyck, B., and W. Herroelen. “ On the Use of the Complexity Index as a Measure of Complexity in
Activity Networks,” European Journal of Operational Research, 91: 347-366 (1996).

----. “ A Branch-and-Bound Procedure for the Resource-Constrained Project Scheduling Problem with
Generdized Precedence Realations,” European Journa of Operational Research, 111: 152-174
(1998a).

----. “/An Optimal Procedure for the Resource-Constrained Project Scheduling Problem with
Discounted Cash Flows and Generalized Precedence Relations,” Computers and Operations
Research, 25: 1-17 (1998b).

----. “The Multi-Mode Resource-Constrained Project Scheduling Problem with Generalized
Precedence Relations,” European Journal of Operational Research, 119: 538-556 (1999).

Deckro, R.F., and J.E. Hebert. “ Resource Constrained Project Crashing,” Omega International Journal
of Management Science, 17: 69-79 (1989).

Deckro, R.F., J.E. Hebert, and W.A. Verdini. “ Project Scheduling with Work Packages,” Omega
International Journal of Management Science, 20: 169-182 (1992).

Deckro, Richard F., E.P. Winkofsky, John E. Hebert, and Roger Gagnon. “ A Decomposition Approach
to Multi-Project Scheduling,” European Journal of Operational Research, 51: 110-118 (1991).

Deckro, Richard F., Michael L. Fredley, John C. Van Hove, and Victor D. Wiley. “ Resource Planning
and Coordination in Multi-Project Programs.” Address to INFORMS Conference. Montreal,
Canada. September 1998.

Demeulemeester, E., B. Dadin, and W. Herroelen. “ A Random Activity Network Generator,”
Operations Research, 41: 972-980 (September-October 1993).

Demeulemeester, Erik, Willy Herroelen, Wendell P. Simpson, Sami Baroum, James H. Patterson, and
Kum-Khiong Yang. “On a Paper by Christofides et al. For Solving the Multiple-Resource
Constrained, Single Project Scheduling Problem,” European Journal of Operational Research,
76: 218-228 (1994).

Demeulemeester, Erik, and Willy Herroelen. “ A Branch-and-Bounding Procedure for the Generalized
Resource-Constrained Project Scheduling Problem,” Operations Research, 45: 201-212 (March-
April 1997).

BIB-2

----. * A Branch-and-Bounding Procedure for the Multiple Resource-Constrained Project Scheduling
Problem,” Management Science, 38: 1803-1818 (December 1992).

Demeulemeester, Erik. “ Minimizing Resource Availahility Costs in Time-Limited Project Networks,”
Management Science, 41: 1590-1598 (October 1995).

Doersch, Robert H., and James H. Patterson. “ Scheduling a Project to maximize its Present Vaue: A
Zero-One Programming Approach,” Management Science, 23: 882-889 (April 1977).

Drexl, A., and J. Grunewald. “ Nonpreemptive Multi-Mode Resource-Constrained Project
Scheduling,” I1E Transactions, 25: 74-81 (1993).

Drex|, A., R. Nissen, J.H. Patterson, and F. Salewski. ProGen/?X -- An Instance Generator for
Resource-Constrained Project Scheduling Problems with Parially Renewable Resources and
Further Extensions. Technical Report, Institut fur Betriebswirtschaftdehre, Universitat Kell,
1997.

Elmaghraby, Salah E. Activity Networks: Project Planning and Control by Network Models. New
Y ork: Wiley-Interscience Publication, 1977.

Elmaghraby, Salah E., and Willy S. Herroelen. “ On the Measurement of Complexity in Activity
Networks,” European Journal of Operations Research, 5: 223-234 (1980).

Ferreira, J. Antunes, L. Valadares Tavares, and J. Silva Coelho. “ A Genera Generator of Project
Networksin Termos of Their Morphological Features,” Proceedings of the Sixth International
Workshop on Project Management and Scheduling. Istanbul, Turkey, July 1998.

Fisher, Marshall L. “ The Lagrangean Relaxation Method for Solving Integer Programming
Problems,” Management Science, 27: 1-18 (January 1981).

Ford, L.R., Jr., and D.R. Fulkerson. Flows in Networks. Princeton, NJ: Princeton University Press,
1962.

Geoffrion, A.M. * Lagrangean Relaxation for Integer Programming,” Mathematical Programming
Study, 2: 82-114 (1974).

Gorenstein, Samuel. “ An Algorithm for Project (Job) Sequencing with Resource Congtraints,”
Operations Research, 20: 835-850 (1972).

Hartmann, Sonke, and Andreas Drexl. “ Project Scheduling with Multiple Modes: A Comparison of
Exact Algorithms,” Networks, 32: 283-297 (1998).

Herroelen, Willy, Bert De Reyck, and Erik Demeulemeester. “ Resource-Constrained Project
Scheduling: A Survey of Recent Developments,” Computers & Operations Research, 25: 279-
302 (1998).

Icmeli, Oya. “ Project Scheduling Problems: A Survey,” International Journal of Operations &
Production Management, 13: 80-91 (1993).

BIB-3

Icmeli, O. and S.S.Erenguc. “ A Branch-and-Bound Procedure for the Resource-Constrained Project
Scheduling Problem with Discounted Cash Flows,” Management Science, 42: 1395-1408
(1996).

Icmeli, Oya, and Walter Rom. “ Solving the Resource Constrained Project Scheduling Problem with
Optimization Subroutine Library,” Computer in Operations Research, 23: 801-817 (1996).

Kamburowski, J. “ On the Minimum Cost Project Schedule,” Omega International Journal of
Management Science, 23: 463-465 (1995).

Kelley, JamesE., Jr. “ Critical-Path Planning and Scheduling: Mathematical Basis,” Operations
Research, 9: 296-320 (1961).

Kolisch, Rainer, and Arno Sprecher. PSPLIB — A Project Scheduling Problem Library. Manuskripte
aus den Instituten Fur Betriebswirtschaftsehre der Universitat Kiel Nr. 396, Christian-
Albrechts-Universitat zu Kiel, March 1996.

Kolisch, Rainer, and Thomas Frase. “ Minimizing Resource Costs When Meeting Tight Deadlinesin a
Project Environment,” Abstracts of the Fifth International Workshop on Project Management
and Scheduling: 139-142, Poznan, Poland (April 1996).

Kolisch, R., and R. Padman. An Integrated Survey of Project Scheduling. Manuskripte aus den
Instituten Fur Betriebswirtschaftdehre der Universitat Kiel Nr. 463, Christian-Albrechts-
Universitat zu Kiel, July 1998.

Kolisch, Rainer, Arno Sprecher, and Andreas Drexl. “ Characterization and Generation of a Genera
Class of Resource-Constrained Project Scheduling Problems,” Management Science, 41: 1693-
1703 (October 1995).

----. Characterization and Generation of a General Class of Resource-Constrained Project Scheduling
Problems. Manuskripte aus den Instituten Fur Betriebswirtschaftsehre Nr. 301, Christian-
Albrechts-Universitat zu Kiel, December 1992.

Kolisch, Rainer. Project Scheduling Under Resource Constraints. Efficient Heuristics for Several
Problem Classes. Heidelberg, Germany: Physica-Verlag, 1995.

Kurtulus, ., and E.W. Davis. “ Multi-Project Scheduling: Catagorization of Heuristic Rules
Performance,” Management Science, 28: 161-172 (February 1982).

Kurtulus, Ibrahim S., and Subhash C. Narula. “ Multi-Project Scheduling: Analysis of Project
Performance,” 11E Transactions, 17: 58-66 (1985).

Kuyumcu, Ahmet, and Alberto Garcia-Diaz. “ A Decomposition Approach to Project Compression
with Concave Activity Cost Functions,” |1E Transactions, 26: 63-73 (November 1994).

Lasdon, Leon S. Optimization Theory for Large Systems. New Y ork: Macmillan Publishing Co., Inc.,
1970.

BIB-4

Moder, J. J., C.R. Phillips, and E.W. Davis. Project Management with CPM, PERT, and Precedence
Diagramming (Third Edition). New Y ork: Van Nostrand Reinhold Company, 1983.

Nauss, Robert M. Parametric Integer Programming. Columbia: University of Missouri Press, 1979.

Patterson, James H. “ A Comparison of Exact Approaches for Solving the Multiple Constrained
Resource, Project Scheduling Problem,” Management Science, 30: 854-867 (July 1984).

Patterson, JH., R. Slowinski, F.B. Tabot, and J. Weglarz. “ An Algorithm for a General Class of
Precedence and Resource Constrained Scheduling Problems,” Advances in Project Scheduling.
(R. Slowinski and J. Weglarz (eds.)), Elsevier Science Publishers, Amsterdam, pp. 3-28, 1989.

----. “Computational Experience with a Backtracking Algorithm for Solving a General Class of
Precedence and Resource-Constrained -Scheduling Problems,” European Journal of Operational
Research, 49: 68-79 (1990).

Patterson, James H., and Walter D. Huber. “ A Horizon-Varying, Zero-One Approach to Project
Scheduling,” Management Science, 20: 990-998 (February 1974).

Patterson, James H., and Glenn W. Roth. “ Scheduling a Project Under Multiple Resource Constraints:
A Zero-One Programming Approach,” AllE Transations, 8: 449-455 (1976).

Phillips, Steve, Jr., and Mohamed |. Dessouky. “ Solving the Project Time/Cost Tradeoff Problem
Using the Minimal Cut Concept,” Management Science, 24: 393-400 (December 1977).

Pritsker, A. Alan, Lawrence J. Watters, and Philip M. Wolfe. *“ Multiproject Scheduling with Limited
Resources: A Zero-one Programming Approach,” Management Science: 16: 93-108 (September
1969).

Salewski, Frank, Andreas Schirmer, and Andreas Drex|. “ Project Scheduling Under Resource and
Mode Identity Constraints: Model, Complexity, Methods, and Application,” European Journal of
Operations Research, 102: 88-110 (1997).

----. Project Scheduling Under Resource and Mode I dentity Constraints. Part |: Moddl, Complexity
Status, and Methods. Unpublished Manuscript. Kiel, Germany, January 1996a.

----. Project Scheduling Under Resource and Mode Identity Condgtraints. Part |1: An Application to
Audit-Staff Scheduling. Unpublished Manuscript. Kiel, Germany, January 1996b.

Schwindt, C. ProGen/max: A New Problem Generator for Different Resource- Constrained Project
Scheduling Problems with Minimal and Maximal Time Lags. Technical Report 449, Ingtitut fur
Wirtschaftstheorie und Operations Research, Universitat Karlsruhe, July 1995.

----. Generation of Resource-Constrained Project Scheduling Problems with Minimal and Maximal
Time Lags. Technical Report 489, Institut fur Wirtschaftstheorie und Operations Research,
Universitat Karlsruhe, November 1996.

Shtub, Avraham, Jonathan F. Bard, and Shlomo Globerson. Project Management: Engineering,
Technology, and Implementation. Englewood Cliffs, NJ: Prentice Hall, 1994.

BIB-5

Speranza, M. Grazia, and Carlo Vercellis. “ Hierarchical Models for Multi-Project Planning and
Scheduling,” European Journal of Operational Research, 64: 312-325 (1993).

Sprecher, Arno. Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode Case.
Berlin: Springer-Verlag, 1994.

Sprecher, Arno, and Andreas Drex|. “ Multi-Mode, Resource-Constrained Project Scheduling by a
Simple, General, and Powerful Sequencing Algorithm,” European Journal of Operational
Research, 107: 431-450 (1998).

----. Solving Multi-Mode Resource-Constrained Project Scheduling Problems by a Simple, Generdl,
and Powerful Sequencing Algorithm. Part |: Theory. Unpublished Manuscript. Kiel, Germany,
January 1996a.

----. Solving Multi-Mode Resource-Constrained Project Scheduling Problems by a Simple, General,
and Powerful Sequencing Algorithm. Part 11: Computation. Unpublished Manuscript. Kiel,
Germany, January 1996b.

Sprecher, Arno, Rainer Kolisch, and Andreas Drexl. “ Semi-active, active, and non-delay schedules for
the resource-constrained project scheduling problem,” European Journal of Operational
Research, 80: 94-102 (1995).

Sprecher, Arno, Sonke Hartmann, and Andreas Drexl. “ An Exact Algorithm for Project Scheduling
with Multiple Modes,” OR Spektrum, 19: 195-203 (1997).

Stinson, Joel P., Edward W. Davis, and Basheer M. Khumawala. “ Multiple Resource-Constrained
Scheduling Using Branch-and-Bound,” AllE Transactions, 10: 252-259 (September 1978).

Sweeney, Dennis J., and Richard A. Murphy. “ A Method of Decomposition for Integer Programs,”
Operations Research, 27: 1128-1141 (1979).

----. “ Branch and Bound Methods for Multi-Item Scheduling,” Operations Research, 29: 853-864
(September-October 1981).

Talbot, F. Brian, and James H. Patterson. “ An Efficient Integer Programming Algorithm with Network
Cutsfor Solving Resource-Constrained Scheduling Problems,” Management Science, 24: 1163-
1174 (July 1978).

Talbot, F. Brian. “ Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The
Nonpreemptive Case,” Management Science, 28: 1197-1210 (October 1982).

Thesen, A. “Measures of the Redtrictiveness of Project Networks, “ Networks, 7: 193-208 (1977).

Tripathy, Arabinda. “ School Timetabling— A Case in Large Binary Integer Linear Programming,”
Management Science,30: 1473-1489 (December 1984).

Valdes, Jacobo, Robert E. Tarjan, and Eugene L. Lawler. “ The Recognition of Series Parallel
Digraphs,” SIAM Journal on Computing, 11: 298-313 (May 1982).

BIB-6

Van Hove, John C. An Integer Program Decomposition Approach to Combat Planning. PhD
dissertation, Air Force Institute of Technology, Wright-Patterson AFB OH 45433, July 1998.

Vercellis, Carlo. “ Constrained Multi-Project Planning Problems: A Lagrangean Decomposition
Approach,” European Journal of Operational Research, 78: 267-275 (1994).

Wheeler, Bob. “ The Mother of All Random Number GeneratorsMarsaglia.” Electronic Mail.
19:32:08EDT, 28 Oct 1994.

Wiley, Victor D. Optimization Analysis for Desigh and Planning of Multi-Project Programs. MS
thesis, AFI T/GOR/ENS/96M-18. School of Engineering, Air Force Ingtitute of Technology
(AU), Wright-Patterson AFB OH, March 1996.

Wiley, Victor D., Richard F. Deckro, and Jack A. Jackson, Jr. * Optimization Analysis for Design and
Planning of Multi-Project Programs,” European Journal of Operational Research, 107: 492-506
(1998).

Williams, H.P. Model Building in Mathematical Programming, 2d Ed. Chichester: John Wiley and
Sons, 1985.

Wu, Y., and C. Li. * Minimal Cost Project Networks: the Cut Set Parallel Difference Method,” Omega
International Journal of Management Science, 22: 401-407 (1994).

Zamani, M. Reza. * A High Performance Near-Exact Algorithm for the Resource-Constrained Project
Scheduling Problem,” European Journal of Operational Research (Under Review).

BIB-7

Vita

Major Michael L. Fredley was born in Hammond, Indiana. He graduated from Mason City High
School in Mason City, lowa, in May 1982. He pursued his undergraduate studies at the University of
Utah where he graduated cum laude with a Bachelor of Science degree in Mathematics in June 1989.
He was commissioned through AFROT C Detachment 850 at the University of Utah where he was
recognized as a Distinguished Graduate and nominated for a Regular Commission.

Major Fredley’sfirst Air Force assignment was to the 49" Test Squadron, Barksdale AFB,
Louisiana, where he served as a Weapons Test Analyst for the B-52 and B-1B weapon systems. In
August 1993, he entered the Graduate School of Engineering, Air Force Ingtitute of Technology. He
graduated in May 1995 with a Masters of Science degree in Operations Research and was designated
as aDigtinguished Graduate. He then entered the Ph.D. program in Operations Research where he
reached candidacy before being reassigned to the Air Force Studies and Analyses Agency at the
Pentagon in October 1998. Major Fredley is currently assigned to Y ongsan Garrison, Seoul, Korea,

where he serves as the Air Analyst to Combined Forces Command and United States Forces — Korea

VITA-1

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE
25-09-2001 Doctoral Dissertation

3. DATES COVERED (From - To)
Jun 1997 — Sep 2001

4. TITLE AND SUBTITLE
A DECOMPOSITION APPROACH FOR THE MULTFMODAL, RESOURCE-

5a. CONTRACT NUMBER

CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM WITH
GENERALIZED PRECEDENCE AND EXPEDITING RESQURCES

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

Michael L. Fredley, Magjor, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFT/DSENS/01-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research
Attn: Major Juan R. Vasquez

10. SPONSOR/MONITOR'S ACRONYM(S)
AFOSR

11. SPONSOR/MONITOR’S REPORT

801 N. Randolph St., Room 933
Arlington, VA 22203-1977

Comm: (703) 696-8431

e-mail: juan.vasgquez@afosr.af.mil NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The field of project scheduling has received a gre at deal of study for many years with a steady evolution of problem complexity and solution
methodologies. As solution methodologies and technologies improve, increasingly complex, real -world problems are addressed, presenting
researchers a continuing chal lenge to find ever more effective means for approaching project scheduling. This dissertation introduces a project
scheduling problem which is applicable across a broad spectrum of real -world situations. The problem is based on the well -known Resource-
Constrained Project Scheduling Problem, extended to include multiple modes, generalized precedence, and expediting resources. The problem
is further extended to include multiple projects which have generalized precedence, renewable and nonrenewable resource s, and expediting
resources at the program level.

The problem presented is one not previously addressed in the literature nor isit one to which the existing specialized project scheduling
methodologies can be directly applied. This dissertation present s adecomposition approach for solving the problem, including algorithms for
solving the decomposed subproblems and the master problem. This dissertation also describes a methodology for generating instances of the
new problem, extending the way existing problem generators describe and construct network structures and this class of problem. The
methodologies presented are demonstrated through extensive empirical testing.

15. SUBJECT TERMS
CPM, Critical Path Method, Decomposition, Network, Network Generator, Program, Program Management, Project, Project
Generator, Project Management, Project Scheduling, Scheduling, Sweeney -Murphy Decomposition

16. SECURITY CLASSIFICATION OF: | 17.LIMITATIONOF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF Richard F. Deckro, DBA (ENS)
a. REPORT | b. ABSTRACT | c.THISPAGE PAGES 19b. TELEPHONE NUMBER (Include area code)
U U U uu 270 (937) 255-6565, ext 4325, e-mail: Richard.Deckro@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

